DRBEM Solution of the Double Diffusive Convective Flow

2015-09-18
A numerical investigation of unsteady, two-dimensional double diffusive convection flow through a lid-driven square enclosure is carried on. The left and bottom walls of the enclosure are either uniformly or non-uniformly heated and concentrated, while the right vertical wall is maintained at a constant cold temperature. The top wall is insulated and it moves to the right with a constant velocity. The numerical solution of the coupled nonlinear differential equations is based on the use of dual reciprocity boundary element method (DRBEM) in spatial discretization and an unconditionally stable backward implicit finite difference scheme for the time integration. Due to the coupling and the nonlinearity, an iterative process is employed between the equations. The boundary only nature of the DRBEM and the use of the fundamental solution of Laplace equation make the solution process computationally easier and less expensive compared to other domain discretization methods. The study focuses on the effects of uniform and non-uniform heating and concentration of the walls for various values of physical parameters on the double-diffusive convection in terms of streamlines, isotherms and isoconcentration lines.

Suggestions

DRBEM simulation on mixed convection with hydromagnetic effect
Bozkaya, Canan (2014-09-25)
The steady and laminar mixed convection flow of a viscous, incompressible, and electrically conducting fluid under the effect of an inclined magnetic field is numerically investigated. Specifically, the two-dimensional flow in a lid-driven cavity with a linearly heated wall is considered. The dual reciprocity boundary element method is used for solving the coupled nonlinear differential equations in terms of stream function, vorticity, and temperature. The study focuses on the effects of the physical parame...
DRBEM solution of free convection in porous enclosures under the effect of a magnetic field
Pekmen, B.; Tezer, Münevver (2013-01-01)
The dual reciprocity boundary element method (DRBEM) is applied for solving steady free convection in special shape enclosures filled with a fluid saturated porous medium under the effect of a magnetic field. The left and right walls are maintained at constant or different temperatures while the top and bottom walls are kept adiabatic. The effect of the external magnetic field on the flow and temperature behavior is visualized with different Rayleigh numbers Ra, Hartmann numbers Ha and inclination angle phi...
DRBEM solution to ferrofluid flow and heat transfer in semi annulus enclosure in the presence of magnetic field
Oğlakkaya, Fatma Sidre; Bozkaya, Canan (null; 2016-07-11)
In this work, ferrofluid flow and heat transfer in a semicircular annulus enclosure filled with Fe3O4- water nanaofluid is studied in the presence of an externally applied magnetic field. The inner and outer circular walls are maintained at constant temperature and two straight boundaries at the bottom are considered adiabatic. The governing equations which are consistent with the principles of ferrohydrodynamics (FHD) and magnetohydrodynamics (MHD) are discretized by using the dual reciprocity boundary ele...
FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field
TÜRK, ÖNDER; Tezer, Münevver (2017-03-01)
The two-dimensional, laminar, unsteady natural convection flow in a square enclosure filled with aluminum oxide ()-water nanofluid under the influence of a magnetic field, is considered numerically. The nanofluid is considered as Newtonian and incompressible, the nanoparticles and water are assumed to be in thermal equilibrium. The mathematical modelling results in a coupled nonlinear system of partial differential equations. The equations are solved using finite element method (FEM) in space, whereas, the ...
Natural convection heat transfer from inclined plate-fin heat sinks
Tarı, İlker (2013-01-01)
The steady-state natural convection from heat sinks with parallel arrangement of rectangular cross section vertical plate fins on a vertical base are numerically investigated in order to obtain a validated model that is used for investigating inclined orientations of a heat sink. Taking a previous experimental study as a basis, aluminum heat sinks with two different practical lengths are modeled. The models and the simulation approach are validated by comparing the flat plate heat sink results with the avai...
Citation Formats
C. Bozkaya and M. Tezer, “DRBEM Solution of the Double Diffusive Convective Flow,” 2015, vol. 112, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35551.