A column-based two-stage analog-to-digital converter for uncooled microbolometer arrays

2009-04-17
Toprak, Alperen
Tepegoz, Murat
Akın, Tayfun
This paper presents a column-based, two-stage, 12-bit analog-to-digital converter structure designed for uncooled microbolometer arrays. On-chip analog-to-digital converters prevent the degradation of sensitive analog output by external noise sources as well as providing a more integrated functionality. Despite these advantages, the area and power constraints limit the usage of high performance converters. This paper presents a new structure that provides a balance between area, power, and performance. The structure is composed of two stages: a tracking ADC stage running at each column during integration and a successive approximation ADC stage which is shared by a number of columns depending on the array size and operation frequency. The tracking ADC operates during the integration time, while the second ADC starts after the integration is completed. The converter includes self-calibration to lower the effect of process variations and digital correction mechanisms to eliminate the need for low-offset comparators. The simulations and theoretical calculations based on the simulation results show that the total power dissipation of the proposed structure will be approximately 73.7 mW and 88.4 mW on a 320x240 array operating at 60 Hz and 384x288 array operating at 50 Hz, respectively.

Suggestions

A Two-Stage Digital-to-Analog Converter for Bias Correction in Uncooled Microbolometer Arrays
Toprak, Alperen; Tepegoz, Murat; Akın, Tayfun (2011-04-29)
This paper introduces a detector biasing scheme proper for resistive microbolometer type uncooled thermal detector focal plane arrays (FPAs). The proposed scheme utilizes a 2-stage digital-to-analog converter (DAC) architecture where the first DAC stage generates the voltage interval that covers the bias voltage range of the overall FPA, while the second stage generates the high resolution analog voltages that are used to apply pixel-specific bias voltages. The second DAC stage output includes a resistive l...
A Pipelined Camellia Architecture for Compact Hardware Implementation
Kavun, Elif Bilge; Yalcin, Tolga (2010-07-09)
In this paper, we present a compact and fast pipelined implementation of the block cipher Camellia for 128-bit data and 128-bit key lengths. The implementation is suitable for both Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) platforms, and is targeted for low area and low power applications. To obtain a compact design, pipelining principles are exploited and platform specific optimizations are made. The design requires only 321 slices with a throughput of 32.96 Mb...
A 35 GHz coplanar waveguide power divider
Gürbüz, Ozan Doǧan; Topalli, Kagan; Ünlü, Mehmet; Demir, Şimşek; Akın, Tayfun (2010-12-20)
This text presents the design and measurement of a power divider topology implemented using coplanar waveguides by micromachining technology. The power divider is a three port structure. For simple three port power divider structures significant modifications are needed for changing power division ratio. For the proposed one in this paper the ratio can be adjusted by changing only the lengths of shunt stubs included in the structure. The design is at 35 GHz and the implementation is done by coplanar wavegui...
Implementation Studies of Robot Swarm Navigation Using Potential Functions and Panel Methods
Merheb, Abdel-Razzak; GAZİ, VEYSEL; Sezer Uzol, Nilay (2016-10-01)
This paper presents a practical swarm navigation algorithm based on potential functions and properties of inviscid incompressible flows. Panel methods are used to solve the flow equations around complex shaped obstacles and to generate the flowlines, which provide collision-free paths to the goal position. Safe swarm navigation is achieved by following the generated streamlines. Potential functions are used to achieve and maintain group cohesion or a geometric formation during navigation. The algorithm is i...
ACOUSTIC CROSSTALK REDUCTION METHOD FOR CMUT ARRAYS
Bayram, Barış; Kupnik, Mario; Khuri-Yakub, Butrus T. (2006-01-01)
This paper reports on the finite element analysis (FEA) of crosstalk in capacitive micromachined ultrasonic transducer (CMUT) arrays. Finite element calculations using a commercial package (LS-DYNA) were performed for an immersed I-D CMUT array operating in the conventional and collapsed modes. LS-DYNA was used to model the crosstalk in CMUT arrays under specific voltage bias and excitation conditions, and such a modeling is well worth the effort for special-purpose CMUT arrays for ultrasound applications s...
Citation Formats
A. Toprak, M. Tepegoz, and T. Akın, “A column-based two-stage analog-to-digital converter for uncooled microbolometer arrays,” 2009, vol. 7298, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35651.