Characteristic Basis Finite Element Method (CBFEM) - A Non-iterative Domain Decomposition Finite Element Algorithm for Solving Electromagnetic Scattering Problems

2008-07-11
Ozgun, Ozlem
Mittra, Raj
Kuzuoğlu, Mustafa
Efficient and accurate solution of electromagnetic boundary value problems involving electrically-large and geometrically complex objects continue to challenge us, because they present a heavy burden on the CPU time and memory. During recent years, various domain decomposition schemes that are based on iterative techniques have been proposed to solve large-scale electromagnetic scattering problems by partitioning the original problem into smaller and manageable subproblems [1-4].

Suggestions

Inverse problems for a semilinear heat equation with memory
Kaya, Müjdat; Çelebi, Okay; Department of Mathematics (2005)
In this thesis, we study the existence and uniqueness of the solutions of the inverse problems to identify the memory kernel k and the source term h, derived from First, we obtain the structural stability for k, when p=1 and the coefficient p, when g( )= . To identify the memory kernel, we find an operator equation after employing the half Fourier transformation. For the source term identification, we make use of the direct application of the final overdetermination conditions.
Rigorous solutions of large-scale dielectric problems with the parallel multilevel fast multipole algorithm
Ergül, Özgür Salih (2011-08-20)
We present fast and accurate solutions of large-scale electromagnetics problems involving three-dimensional homogeneous dielectric objects. Problems are formulated rigorously with the electric and magnetic current combined-field integral equation (JMCFIE) and solved iteratively with the multilevel fast multipole algorithm (MLFMA). In order to solve large-scale problems, MLFMA is parallelized efficiently on distributed-memory architectures using the hierarchical partitioning strategy. Efficiency and accuracy...
Sturm comparison theory for impulsive differential equations
Özbekler, Abdullah; Ağacık, Zafer; Department of Mathematics (2005)
In this thesis, we investigate Sturmian comparison theory and oscillation for second order impulsive differential equations with fixed moments of impulse actions. It is shown that impulse actions may greatly alter the oscillation behavior of solutions. In chapter two, besides Sturmian type comparison results, we give Leightonian type comparison theorems and obtain Wirtinger type inequalities for linear, half-linear and non-selfadjoint equations. We present analogous results for forced super linear and super...
The finite element method over a simple stabilizing grid applied to fluid flow problems
Aydın, Selçuk Han; Tezer-Sezgin, Münevver; Department of Scientific Computing (2008)
We consider the stabilized finite element method for solving the incompressible Navier-Stokes equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known instabilities arising from the application of standard Galerkin finite element method are eliminated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin (SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized into a set of regular triangular elements. In SSM, the...
Periodic solutions and stability of differential equations with piecewise constant argument of generalized type
Büyükadalı, Cemil; Akhmet, Marat; Department of Mathematics (2009)
In this thesis, we study periodic solutions and stability of differential equations with piecewise constant argument of generalized type. These equations can be divided into three main classes: differential equations with retarded, alternately advanced-retarded, and state-dependent piecewise constant argument of generalized type. First, using the method of small parameter due to Poincaré, the existence and stability of periodic solutions of quasilinear differential equations with retarded piecewise constant...
Citation Formats
O. Ozgun, R. Mittra, and M. Kuzuoğlu, “Characteristic Basis Finite Element Method (CBFEM) - A Non-iterative Domain Decomposition Finite Element Algorithm for Solving Electromagnetic Scattering Problems,” 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35733.