Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A 1280x1024-15 mu m CTIA ROIC for SWIR FPAs
Date
2015-04-23
Author
Akın, Tayfun
Bayhan, Nusret
Gulden, M. Ali
Incedere, O. Samet
Soyer, S. Tuncer
Kocak, Serhat
Yalcin, Cem
Ustundag, M. Cem B.
Turan, Ozge
Eksi, Umut
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
141
views
0
downloads
Cite This
This paper reports the development of a new SXGA format low-noise CTIA ROIC (MT12815CA-3G) suitable for mega-pixel SWIR InGaAs detector arrays for low-light imaging applications. MT12815CA-3G is the first mega-pixel standard ROIC product from Mikro-Tasarim, which is a fabless semiconductor company specialized in the development of ROICs and ASICs for visible and infrared hybrid imaging sensors. MT12815CA-3G is a low-noise snapshot mega-pixel CTIA ROIC, has a format of 1280 x 1024 (SXGA) and pixel pitch of 15 mu m. MT12815CA-3G has been developed with the system-on-chip architecture in mind, where all the timing and biasing for this ROIC are generated on-chip without requiring any special external inputs. MT12815CA-3G is a highly configurable ROIC with many features that can be programmed through a 3-wire serial interface allowing on-the-fly configuration the ROIC. It performs snapshot operation both using Integrate-Then-Read (ITR) and Integrate-While-Read (IWR) modes. The CTIA type pixel input circuitry has 3 gain modes with programmable full-well-capacity (FWC) values of 10K e-, 20K e-, and 350K e- in the very high gain (VHG), high-gain (HG), and low-gain (LG) modes, respectively. MT12815CA-3G has an input referred noise level of less than 5 e-in the very high gain (VHG) mode, suitable for very low-noise SWIR imaging applications. MT12815CA-3G has 8 analog video outputs that can be programmed in 8, 4, or 2-output modes with a selectable analog reference for pseudo-differential operation. The ROIC runs at 10 MHz and supports frame rate values up to 55 fps in the 8-output mode. The integration time of the ROIC can be programmed up to 1s in steps of 0.1 mu s. The ROIC uses 3.3 V and 1.8V supply voltages and dissipates less than 350 mW in the 4-output mode. MT12815CA-3G is fabricated using a modern mixed-signal CMOS process on 200 mm CMOS wafers, and there are 44 ROIC parts per wafer. The probe tests show that the die yield is higher than 70%, which corresponds to more than 30 working ROIC parts per wafer typically. MT12815CA-3G ROIC is available as tested wafers or dies, where a detailed test report and wafer map are provided for each wafer. A compact USB 3.0 based test camera and imaging software are also available for the customers to test and evaluate the imaging performance of SWIR sensors built using MT12815CA-3G ROICs. Mikro-Tasarim has also recently developed a programmable mixed-signal application specific integrated circuit (ASIC), called MTAS1410X8, which is designed to perform ROIC driving and digitization functions for ROICs with analog outputs, such as MT12815CA-3G and MT6415CA ROIC products of Mikro-Tasarim. MTAS1410X8 has 8 simultaneously working 14-bit analog-to-digital converters (ADCs) with integrated programmable gain amplifiers (PGAs), video input buffers, programmable controller, and high-speed digital video interface supporting various formats including Camera Link. MT12815CA-3G ROIC together with MTAS1410X8 ASIC can be used to develop low-noise high-resolution SWIR imaging sensors with low power dissipation and reduced board area for the camera electronics.
Subject Keywords
MTAS1410X8
,
ASIC
,
InGaAs;
,
Low-noise
,
Snapshot
,
MT12815CA-3G
,
1280x1024
,
CTIA
,
SWIR
,
ROIC
URI
https://hdl.handle.net/11511/35973
DOI
https://doi.org/10.1117/12.2179537
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
MT6415CA: A 640x512-15 mu m CTIA ROIC for SWIR InGaAs Detector Arrays
Eminoglu, Selim; Isikhan, Murat; Bayhan, Nusret; Gulden, M. Ali; Incedere, O. Samet; Soyer, S. Tuncer; Kocak, Serhat; Yilmaz, Gokhan S.; Akın, Tayfun (2013-05-03)
This paper reports the development of a new low-noise CTIA ROIC (MT6415CA) suitable for SWIR InGaAs detector arrays for low-light imaging applications. MT6415CA is the second product in the MT6400 series ROICs from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic imaging sensors and ROICs for hybrid imaging sensors. MT6415CA is a low-noise snapshot CTIA ROIC, has a format of 640 x 512 and pixel pitch of 15 mu m, and has been developed with the system-on-chi...
MT3250BA: A 320x256-50 mu m Snapshot Microbolometer ROIC for High-Resistance Detector Arrays
Akın, Tayfun (2013-05-03)
This paper reports the development of a new microbolometer readout integrated circuit (MT3250BA) designed for high-resistance detector arrays. MT3250BA is the first microbolometer readout integrated circuit (ROIC) product from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic CMOS imaging sensors and ROICs for hybrid photonic imaging sensors and microbolometers. MT3250BA has a format of 320 x 256 and a pixel pitch of 50 mu m, developed with a system-on-chip ...
Cell detection using a CMOS image sensor with modified pixel structure suitable for bio-chemical surface activation
Musayev, Javid; Adiguzel, Yekbun; Külah, Haluk; Akın, Tayfun (2013-04-02)
This paper presents a CMOS image sensor with a 32 x 32 pixel array suitable for cell capture, detection, and quantification. Pixels measuring 15 mu m x 15 mu m have a modified structure, suitable for post-CMOS electroless gold plating, which enables surface activation for cell capture without the need for any intermediate layer. This structure also increases the detection probability of captured cells as opposed to non-captured ones, owing to a special light mask (metal shield) implemented on pixels. The li...
MT6425CA: A 640x512-25 mu m CTIA ROIC for SWIR InGaAs Detector Arrays
Akın, Tayfun; Altiner, Caglar; Akın, Tayfun (2012-04-27)
This paper reports the development of a new CTIA ROIC (MT6425CA) suitable for SWIR InGaAs detector arrays. MT6425CA has a format of 640 x 512 with a pixel pitch of 25 mu m and has a system-on-chip architecture, where all the critical timing and biasing for this ROIC are generated by programmable blocks on-chip. MT6425CA is a highly configurable and flexible ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. The ROIC r...
Analysis of vision aided inertial navigation systems
Yuksel, Yigiter; Kaygisiz, H. Burak (2006-04-19)
We propose in this paper a method to integrate inertial navigation systems with electro optic imaging devices. Our method is based on updating the inertial navigation system in a Kalman filter structure using line of sight measurements obtained from a camera. The proposed method is analyzed based on a UAV scenario generated by our trajectory simulator and the results are provided here. The results show that even a single vision aid can improve the performance of inertial navigation system.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Akın et al., “A 1280x1024-15 mu m CTIA ROIC for SWIR FPAs,” 2015, vol. 9451, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35973.