Attitude determination and rotational motion parameters identification of a LEO satellite through magnetometer and sun sensor data

2007-06-16
Kutlu, A.
Haciyev, Ch.
Tekinalp, Ozan
In this paper, Attitude Determination and Parameter Identification problem of a LEO satellite are studied. In Attitude Determination System three rate gyroscopes, three axis magnetometer and a sun sensor data are used. Using Kalman Filter algorithms angular rates and quaternions are estimated. In these algorithms, rate gyroscope bias measurements are also taken into consideration in state estimation. In Parameter Identification part, the Moment of Inertia values of the satellite are estimated by using Least Square Estimation method. Finally by combining these two parts, the Attitude and Mol values of the spacecraft are obtained.

Suggestions

Orbit determination strategy and verification for geosynchronous satellites
Köker, Abdulkadir; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
In this thesis, the batch and sequential orbit determination procedures for the geostationary satellites are presented. The aim of the study is to investigate the effect of the angle only and standard angle-range measurements on orbit determination accuracy. The effect of various factors on estimation accuracy such as measurement frequency, observation duration, and number of observation sites are investigated using the simulated measurement data. Estimation methods namely, nonlinear least square, extended ...
Covariance Matrix Estimation of Texture Correlated Compound-Gaussian Vectors for Adaptive Radar Detection
Candan, Çağatay; Pascal, Frederic (2022-01-01)
Covariance matrix estimation of compound-Gaussian vectors with texture-correlation (spatial correlation for the adaptive radar detectors) is examined. The texture parameters are treated as hidden random parameters whose statistical description is given by a Markov chain. States of the chain represent the value of texture coefficient and the transition probabilities establish the correlation in the texture sequence. An Expectation-Maximization (EM) method based covariance matrix estimation solution is given ...
Measurement correction of a set of analog sun sensors via neural network
Sozen, Semsettin Numan; Gokce, Murat; Yavuzyilmaz, Cagatay; Gulmammadov, Farid; Söken, Halil Ersin (2021-06-23)
A Neural Network (NN) based method to improve the accuracy of a set of analog Sun sensors is presented. Analog Sun Sensors are commonly used on satellites due to their reduced cost, small size and low power consumption. However, especially in Earth imaging satellites, they are prone to the Earth albedo effects. Magnitude and direction of albedo change depending on the reflection characteristics of the Earth's surface, position and attitude of the satellite and position of the Sun. The albedo may deteriorate...
Linearization in satellite attitude control with modified Rodriguez parameters
Doruk, R. Özgür (2009-01-01)
Purpose - The purpose of this paper is to analyze the results of the Jacobian matrix linearization of the satellite attitude dynamics with modified Rodriguez parameters (MRP) as attitude representation.
Maximum likelihood autoregressive model parameter estimation with noise corrupted independent snapshots
Çayır, Ömer; Candan, Çağatay (2021-09-01)
Maximum likelihood autoregressive (AR) model parameter estimation problem with independent snapshots observed under white Gaussian measurement noise is studied. In addition to the AR model parameters, the measurement noise variance is also included among the unknowns of the problem to develop a general solution covering several special cases such as the case of known noise variance, noise-free snapshots, the single snapshot operation etc. The presented solution is based on the expectation-maximization metho...
Citation Formats
A. Kutlu, C. Haciyev, and O. Tekinalp, “Attitude determination and rotational motion parameters identification of a LEO satellite through magnetometer and sun sensor data,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36067.