Transition-metal nanocluster stabilization fundamental studies: Hydrogen phosphate as a simple, effective, readily available, robust, and previously unappreciated stabilizer for well-formed, isolable, and redissolvable Ir(0) and other transition-metal nanoclusters

2003-07-22
This work tests the hypothesis that tridentate oxoanions are especially effective stabilizers of transition-metal nanoclusters when the O-O distance of the anions matches closely the M-M (M = metal) distance atop the nanocluster surface. Specifically, we test the hypothesis that HPO42- with its 2.5 Angstrom O-O distance is a very simple, effective, but previously unrecognized anion for the stabilization of transition-metal(O) nanoclusters such as those of Ir(O), where the Ir-Ir surface distance is ca. 2.6-2.7 Angstrom. This hypothesis is tested by the five criteria we recently developed. These criteria emphasize the ability of a given nanocluster-stabilizing anion to allow the formation of highly kinetically controlled, near-monodisperse (less than or equal to+/-15%) size distributions of nanoclusters and then to allow isolable and fully redissolvable nanoclusters that exhibit, once redispersed into solution, good catalytic activity and long catalytic lifetimes. The previously unknown precursor complex {[Bu4N] [(1,5-COD)Ir.HPO4]}(n), 1, was prepared and shown to be a preferred precursor for the reproducible formation of hydrogen phosphate- and tetrabutylammonium-stabilized transition-metal lr(O) nanoclusters. The nanocluster formation reaction was shown to follow the slow continuous nucleation (A --> B, rate constant k(1)) followed by fast autocatalytic surface growth (A + B --> 2B, rate constant k(2)) mechanism uncovered previously; this finding was then exploited by showing that nanocluster size control could be achieved as expected by adding excess HPO42- to lower the k(2)/k(1) ratio, resulting in the formation of smaller nanoclusters. A relatively rare experimental demonstration of the balanced reaction for nanocluster formation is also provided. Proton Sponge [i.e., 1,8-bis(dimethylamino)naphthalene] is shown to be a preferred scavenger of the 1 equiv of H+ byproduct formed from the H-2 reduction of the (1,5-COD)Ir(l)+ moiety in the nanocluster precursor to Ir(O) plus H+; positive effects of Proton Sponge on the resultant nanocluster catalytic lifetime are also demonstrated. Transmission electron microscopy (TEM) of the postcatalysis nanoclusters shows that agglomeration is a catalysis-inhibiting deactivation reaction. Overall, the results show that HPO42- is an effective anion for the formation, and then stabilization, of lr(O) transition-metal nanoclusters in acetone and with Bu4N+ countercations. More specifically, HPO42- rates alongside citrate(3-) in the developing series of anion efficacy for nanocluster formation, stabilization and catalytic activity: polyoxoanions > HPO42- similar to citrate(3-) > other commonly employed nanocluster-stabilizing anions. Since a reasonable match between the tridentate O-O distance in HPO42- and the M-M distances is present for the metals Fe, Co, Ni, Ru, Rh Ir, Pd, Re, Os, and Pt [i.e., the lattice size-matching criterion is fulfilled; Ozkar, S.; Finke, R. G. Coord. Chem. Rev. 2003 (submitted for publication)], our results imply that HPO42- merits consideration for nanocluster synthesis and stabilization any time M(O) nanoclusters of the above list of metals are planned. The additional advantages of HPO42- are also presented and briefly discussed, namely, its thermal robustness, its high resistance to reduction or oxidation, its valuable <SUP
LANGMUIR

Suggestions

Ensemble monte carlo study of nonequilibrium carrier dynamics in photo-excited p-i-n, structures
Guncer, SE; Ferry, DK (1996-04-01)
Light scattering from conduction electrons (or from valence holes) can give information on the time-resolved velocity distribution of nonequilibrium carriers. The experimental approach utilizes, e.g., Raman scattering from the single particles to ascertain the velocity distribution. Calculation of the distribution function through an ensemble Monte Carlo technique allows a comparison between the experiment and theory. Here, this is demonstrated with studies of a GaAs p-i-n structure embedded within cladding...
Experimental study on the velocity limits of magnetized rotating plasmas
Teodorescu, C.; Clary, R.; Ellis, R. F.; Hassam, A. B.; Lunsford, R.; Uzun Kaymak, İlker Ümit; Young, W. C. (AIP Publishing, 2008-04-01)
An experimental study on the physical limits of the rotation velocity of magnetized plasmas is presented. Experiments are performed in the Maryland Centrifugal Experiment (MCX) [R. F. Ellis , Phys. Plasmas 12, 055704 (2005)], a mirror magnetic field plasma rotating azimuthally. The externally applied parameters that control the plasma characteristics-applied voltage, external magnetic field, and fill pressure-are scanned across the entire available range of values. It is found that the plasma rotation veloc...
Temperature dependence of magnetic and thermal properties of chiral HyFe and HyMn close to phase transitions by using the Landau mean field model
Tari, Ozlem; Yurtseven, Hasan Hamit (Elsevier BV, 2019-04-15)
Magnetic and thermal properties of chiral metal formate frameworks (MOFs) of NH2NH3M(HCOO)(3), M = Fe, Mn, namely, HyFe and HyMn are investigated close to phase transitions by using Landau phenomenological model. By expanding the free energy in terms of the order parameter, for magnetic properties the temperature dependence of magnetization and inverse magnetic susceptibility, and for thermal properties the heat capacity and entropy are calculated for chiral HyFe and HyMn close to phase transitions using th...
Composition dependency of lattice anisotropy of TlBX2-type chain mixed crystals
Hasanlı, Nızamı; Tas, M (Wiley, 2000-01-01)
Variation of the lattice parameters of TlTl1-xInxSe2 chain mixed crystals with composition have been studied by X-ray diffraction technique. The lattice anisotropy (c/a) of the TlBX2-type mixed crystals changes linearly with substitution of the atoms located bath at the center and at the vertices of the BX4 tetrahedra. A brief survey of the important features of the effect of isomorphic atom substitution on the lattice anisotropy of TlBX2-type mixed crystals with chain structure has been presented.
Nucleon tensor form factors induced by isovector and isoscalar currents in QCD
Alıyev, Tahmasıb; Savcı, Mustafa (2011-10-11)
Using the most general form of the nucleon interpolating current, we calculate the tensor form factors of the nucleon within light cone QCD sum rules. A comparison of our results on tensor form factors with those of the chiral-soliton model and lattice QCD is given.
Citation Formats
S. Özkar, “Transition-metal nanocluster stabilization fundamental studies: Hydrogen phosphate as a simple, effective, readily available, robust, and previously unappreciated stabilizer for well-formed, isolable, and redissolvable Ir(0) and other transition-metal nanoclusters,” LANGMUIR, pp. 6247–6260, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36129.