A RESONANT TUNING FORK FORCE SENSOR WITH UNPRECEDENTED COMBINATION OF RESOLUTION AND RANGE

2011-01-27
This paper presents a double-ended tuning fork (DETF) force sensor with a resolution of 7nN and a range of 0.12N. The resonator has a scale factor of 216 kHz/N, a Q-factor exceeding 60,000 at 3mTorr ambient pressure and a zero-load resonant frequency of 47.6 kHz. The sensor and the complete readout circuit are fully embedded in a compact 65 mm x 52 mm printed circuit board (PCB). The PCB is mounted on a micro-stage and coupled with an off-the-shelf displacement actuator to realize an economical, versatile and robust micro mechanical test frame with unprecedented combination of force and displacement resolutions and ranges.

Suggestions

A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure
Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (Elsevier BV, 2007-03-30)
This paper presents a new, high-performance silicon-on-insulator (SOI) MEMS gyroscope with decoupled oscillation modes. The gyroscope structure allows it to achieve matched-resonance-frequencies, large drive-mode oscillation amplitude, high sense-mode quality factor, and low mechanical cross-talk. The gyroscope is fabricated through the commercially available SOIMUMPS process of MEMSCAP Inc. The fabricated gyroscope has minimum capacitive sense gaps of 2.6 mu m and a structural silicon thickness of 25 mu m,...
A high performance automatic mode-matched MEMS gyroscope with an improved thermal stability of the scale factor
Sonmezoglu, S.; Alper, S.E.; Akın, Tayfun (2013-06-20)
This paper presents a high performance, automatic mode-matched, single-mass, and fully-decoupled MEMS gyroscope with improved scale factor stability. The mode-matching system automatically achieves and maintains the matching between the drive and sense mode resonance frequencies with the help of dedicated frequency tuning electrodes (FTEs). This method isolates the drive and sense mode frequency response dynamics by keeping the proof mass voltage (V PM ) constant, improving the scale factor stability up to ...
A Planar Gyroscope Using a Standard Surface Micromachining Process
Alper, Said Emre; Akın, Tayfun (2000-08-30)
This paper presents a planar gyroscope based on a standard three-layer polysilicon surface micromachining process. Structural geometry is designed to minimize the effects of limitations coming from the standard surface micromachining. Finite element simulations are carried out, and mismatches of resonant frequencies of the drive and sense mode vibrations are reduced down to 0.5% in order to achieve increased performance. The third polysilicon layer on top of outer gimbal is used for feedback control and for...
An adaptive piezoelectric energy harvesting interface circuit with a novel peak detector
Chamanian, S.; Zorlu, O.; Külah, Haluk; Muhtaroglu, A. (2015-03-26)
This paper presents a fully self-powered interface circuit with a novel peak detector for piezoelectric energy harvesters (PEH). This circuit can be utilized to scavenge energy from low power environmental vibrations in 10s of mu W range. Synchronous switching technique is used to extract maximum available power where switching instants are detected independently from excitation changes of the PEH. The proposed peak detector senses voltages higher than power supply for a wide frequency range of input vibrat...
A Bulk-Micromachined Fully Differential MEMS Accelerometer With Split Interdigitated Fingers
Aydin, Osman; Akın, Tayfun (2013-08-01)
This paper proposes a novel bulk-micromachined MEMS accelerometer employing split interdigitated sense fingers that provide a fully differential signal interface, where the accelerometer can be fabricated by a modified silicon-on-glass process using a silicon-on-insulator (SOI) wafer. The accelerometer combines the feasibility of fabricating large mass and high aspect ratio structures using bulk-micromachining together with the highly sensitive split interdigitated sense finger triplets that are connected w...
Citation Formats
K. Azgın, A. Torrents, and T. Akın, “A RESONANT TUNING FORK FORCE SENSOR WITH UNPRECEDENTED COMBINATION OF RESOLUTION AND RANGE,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36316.