Hide/Show Apps

Closed-loop primitives: A method to generate and recognize reaching actions from demonstration

Parlaktuna, Mustafa
Tunaoglu, Doruk
Şahin, Erol
Ugur, Emre
The studies on mirror neurons observed in monkeys indicate that recognition of other's actions activates neural circuits that are also responsible for generating the very same actions in the animal. The mirror neuron hypothesis argues that such an overlap between action generation and recognition can provide a shared worldview among individuals and be a key pillar for communication. Inspired by these findings, this paper extends a learning by demonstration method for online recognition of observed actions. The proposed method is shown to recognize and generate different reaching actions demonstrated by a human on a humanoid robot platform. Experiments show that the proposed method is robust to both occlusions during the observed actions as well as variances in the speed of the observed actions. The results are successfully demonstrated in an interactive game with the iCub humanoid robot platform.