Hierarchical Microstructures Formed by Bidisperse Colloidal Suspensions within Colloid-in-Liquid Crystal Gels

2015-04-08
Diestra-Cruz, Heberth
Büküşoğlu, Emre
Abbott, Nicholas L
Acevedo, Aldo
Past studies have reported that colloids of a single size dispersed in the isotropic phase of a mesogenic solvent can form colloid-rich networks (and gels) upon thermal quenching of the system across the isotropic-nematic phase boundary of the mesogens. Herein we report the observation and characterization of complex hierarchical microstructures that form when bidisperse colloidal suspensions of nanoparticles (NPs; iron oxide with diameters of 188 +/- 20 nm or poly(methyl methacrylate) with diameters of 150 +/- 15 nm) and microparticles (MPs; polystyrene with diameters of 2.77 +/- 0.20 mu m) are dispersed in the isotropic phase of 4-pentyl-4'-cyanobiphenyl (5CB) and thermally quenched. Specifically, we document microstructuring that results from three sequential phase separation processes that occur at distinct temperatures during stepwise cooling of the ternary mixture from its miscibility region. The first phase transition demixes the system into coexisting MP-rich and NP-rich phases; the second promotes formation of a particle network within the MP-rich phase; and the third, which coincides with the isotropic-to-nematic phase transition of 5CB, produces a second colloidal network within the NP-rich phase. We quantified the dynamics of each demixing process by using optical microscopy and Fourier transform image analysis to establish that the phase transitions occur through (i) surface-directed spinodal decomposition, (ii) spinodal decomposition, and (iii) nucleation and growth, respectively. Significantly, the observed series of phase transitions leads to a hierarchical organization of cellular microstructures not observed in colloid-in-liquid crystal gels formed from monodisperse colloids. The results of this study suggest new routes to the synthesis of colloidal materials with hierarchical microstructures that combine large surface areas and organized porosity with potential applications in catalysis, separations, chemical sensing, or tissue engineering.
ACS APPLIED MATERIALS & INTERFACES

Suggestions

Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit
Solmus, Ismail; Rees, D. Andrew S.; Yamali, Cemil; Baker, Derek Keıth; KAFTANOĞLU, BİLGİN (2012-05-01)
In this study, the influence of several design parameters on the transient distributions of temperature, pressure and amount adsorbed in the radial direction of a cylindrical adsorbent bed of an adsorption cooling unit using silica gel/water have been investigated numerically. For this purpose, a transient one-dimensional local thermal non-equilibrium model that accounts for both internal and external mass transfer resistances has been developed using the local volume averaging method. For the conditions in...
Multifunctional metamaterial sensor applications based on chiral nihility
BAKIR, MEHMET; KARAASLAN, MUHARREM; AKGÖL, OĞUZHAN; Sabah, Cumali (2017-11-01)
In this paper, chiral nihility based pressure, density, temperature and moisture content metamaterial sensor applications are investigated in detail. A "chiral nihility'' medium in which both the permittivity and the permeability tend to zero is investigated. Gammadion shaped resonators particularly designed for chiral nihility are introduced. Bandwidths and signal strengths show admissible results. Simulation and experimental results prove that chiral nihility occurred at the resonance frequencies when med...
Device Characterization of ZnInSe2 Thin Films
Gullu, H. H.; Parlak, Mehmet (Elsevier BV; 2016-01-01)
p-Si/n-ZnInSe2 hetero-junction diode was deposited by thermal evaporation of elemental evaporation sources on the 600 mu m thick p-type (1 1 1) mono-crystalline Si wafers having the resistivity value of 1 - 3 (Omega.cm). Detailed electrical characterization of the hetero-junction was performed by the help of temperature dependent current-voltage measurements. The forward current-voltage behaviour of the hetero-junction diode was investigated under the evaluation of possible current transport mechanisms. In ...
Spectroscopic ellipsometry characterization of PbWO4 single crystals
Delice, S.; Isik, M.; Hasanlı, Nızamı; Darvishov, N.H.; Bagiev, V.E. (2022-09-01)
© 2022 Elsevier B.V.Optical characterization of PbWO4 single crystals grown by Czochralski method was achieved in virtue of spectroscopic ellipsometry experiments carried out in the energy region of 1.0–5.6 eV at room temperature. Tetragonal scheelite structure with lattice parameters of a = b = 5.4619 Å and c = 12.0490 Å was determined for the bulk crystal utilizing from XRD analysis. Analyses of the ellipsometry data presented the photon energy dependencies of complex dielectric function of the crystal. T...
Thermal stimulation of aqueous volumes contained in carbon nanotubes: Experiment and modeling
Yarin, AL; Güvenç Yazıcıoğlu, Almıla; Megaridis, CM (2005-01-01)
The dynamic response, as caused by thermal stimulation, of aqueous liquid attoliter volumes contained inside multiwall carbon nanotubes is investigated theoretically and experimentally. The experiments indicate an energetically driven mechanism responsible for the dynamic multiphase fluid behavior visualized under high resolution in the transmission electron microscope. The theoretical model is formulated using a continuum approach, which combines temperature-dependent diffusion with intermolecular interact...
Citation Formats
H. Diestra-Cruz, E. Büküşoğlu, N. L. Abbott, and A. Acevedo, “Hierarchical Microstructures Formed by Bidisperse Colloidal Suspensions within Colloid-in-Liquid Crystal Gels,” ACS APPLIED MATERIALS & INTERFACES, pp. 7153–7162, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37159.