Kitlesel Açık Çevrimiçi Kurslardaki Katılımcı Profillerinin Yapay Sinir Ağı Kullanılarak Sınıflandırması

2015-10-11
AL TAEI, ALI
YILMAZ, MURAT
OCONNOR, RORY V
Halıcı, Uğur
Son yıllarda, özellikle bilgisayar mühendisliği eğitimi alanında, kitlesel açık çevrimiçi kurslara (KAÇK) artan bir ilgi söz konusudur. Bu ilgi bireylerin davranışları, özellikleri ve tercihlerinin anlaşılması öneminin altını çizmektedir. Böyle bir anlayış geliştirmek, sıklıkla oyun geliştirme alanında kullanılan kişilik profilleme gibi yenilikçi teknikleri uyarlayarak KAÇK tasarım sürecini geliştirmek için çeşitli yollar gerektirmektedir. Bu çalışma, bir kişilik referansı olarak Myers-Briggs Tip Göstergesi (MBTG) kullanılarak katılımcıları (özellikle eksik veri durumlarında) sınıflandırmak için bir yöntem önermektedir. Amaç, KAÇK izleyicileri hakkında ayrıştırıcı bir bakış sunmak için KAÇK katılımcı profillerini MBTG kullanarak araştırmaktır. Bu amaçla, bir bilgisayar mühendisliği kursunda 20 soruluk bir çevrimiçi anket kullanılmıştır: Muhatapların (N=75) cevapları yardımıyla katılımcıların kişilik tipleri belirlenmiştir. Dahası, bir makine öğrenimi modeli bireylerin sınıflandırması için önerilmiştir. Sonuçlar, geri yayılımlı (GY) yapay sinir ağının hem eğitim süreci (performans=\%100) hem de test süreci için (performans=\%93,3) uygun olduğunu göstermiştir. Bu bilgilerin ışığında, yaklaşımımızın MBTG açısından KAÇK katılımcılarının sınıflandırılabilirliklerini araştırmak için kullanılabilecek özgün bir yaklaşım olarak kabul edilebilir
Citation Formats
A. AL TAEI, M. YILMAZ, R. V. OCONNOR, and U. Halıcı, “Kitlesel Açık Çevrimiçi Kurslardaki Katılımcı Profillerinin Yapay Sinir Ağı Kullanılarak Sınıflandırması,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37835.