An efficient hybrid conventional method to fabricate nacre-like bulk nano-laminar composites

2009-08-01
Ekiz, O. Oner
Dericioğlu, Arcan Fehmi
Kakisawa, Hideki
Bulk nano-laminar composites were fabricated by a novel technique called Hot-press Assisted Slip Casting (HASC) which combines hot-pressing and slip-casting to improve alignment and volume fraction of the reinforcement. Alumina flakes were used as filler in an epoxy matrix. Microstructure of composites and alignment of flakes were characterized by Scanning Electron Microscope (SEM). Three point bending test and Vickers hardness test were done for mechanical characterization of composites. Flexural tests on Chevron-notched specimens revealed a high work-of-fracture in the case of the fabricated composites reaching to 254 J/m(2). Fracture surface of three point bending samples were examined by SEM. Main fracture mechanism is debonding of flakes from the matrix. With its high volume fraction (60%) of reinforcement phase and high degree of flake alignment, a nacre-like microstructure was achieved with a relatively efficient cost effective and simple hybrid conventional method.
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS

Suggestions

Investigation of the variations in microstructure and mechanical properties of dual-matrix ductile iron by Magnetic Barkhausen Noise analysis
Gür, Cemil Hakan; Erdogan, Mehmet (Informa UK Limited, 2008-01-01)
The variations in the microstructure and tensile properties of dual-matrix ductile irons have been investigated non-destructively by Magnetic Barkhausen Noise (MBN) method. Specimens have been intercritically austenitised at 795 degrees C and 815 degrees C for 20 minutes, and then oil-quenched to obtain different martensite volume fractions. Two specimens, namely as-cast and oil-quenched from 900 degrees C, were prepared for comparison purpose. To investigate the effect of tempering, some specimens were tem...
Extensive deformation behavior of an all-oxide Al2O3-TiO2 nanostructured multilayer ceramic at room temperature
Dericioğlu, Arcan Fehmi; Kagawa, Yutaka (Cambridge University Press (CUP), 2009-11-01)
An all-oxide Al2O3-TiO2 ceramic multilayer composed of 10-100 nm thick alternating layers was fabricated using the reactive magnetron sputtering process. Microindentation tests were carried out on the multilayer ceramic followed by microstructural observations of the cross-sections of the indented sites to characterize the indentation response of the system. During the observations, it was noted that an extensive room temperature "deformation" occurred in the multilayer ceramic material. The material shows ...
Mechanical and microstructural characterization of 6061 aluminum alloy strips severely deformed by Dissimilar Channel Angular Pressing
Tan, Euren; KİBAR, Alp Aykut; Gür, Cemil Hakan (Elsevier BV, 2011-04-01)
Dissimilar Channel Angular Pressing (DCAP) is a severe plastic deformation technique to improve the mechanical properties of flat products by producing ultrafine grains. In this study, the changes in the microstructure and mechanical properties of 6061 Al-alloy strips deformed by various numbers of DCAP passes were investigated. Some DCAPed samples were also held at 200 degrees C and 350 degrees C to investigate the effect of post-annealing. Mechanical properties were determined by hardness and tension test...
Efficient fabrication of ultrafine-grained 316L stainless steel surfaces for orthopaedic applications
Tufan, Yiğithan; Efe, Mert; Ercan, Batur (Informa UK Limited, 2019-10-13)
Commonly used severe plastic deformation (SPD) methods are suitable for fabrication of bulk nano and ultrafine-grained metals. Drawbacks of these methods include durability of dies, geometrical restrictions and reduced ductility of the products. In this study, two common machining techniques used in manufacturing of orthopaedic components, turning and milling, were applied on 316L stainless steel as surface SPD to refine the surface microstructures of the workpiece. Machining with optimised parameters resul...
An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers
NATEGHİ, AREF; Dal, Hüsnü; Keip, M. -A.; MIEHE, CHRISTIAN (Springer Science and Business Media LLC, 2018-05-01)
Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limite...
Citation Formats
O. O. Ekiz, A. F. Dericioğlu, and H. Kakisawa, “An efficient hybrid conventional method to fabricate nacre-like bulk nano-laminar composites,” MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, pp. 2050–2054, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38016.