Preconditioning iterative MLFMA solutions of integral equations

Download
2010-08-19
Gürel, Levent
Malas, Tahir
Ergül, Özgür Salih
The multilevel fast multipole algorithm (MLFMA) is a powerful method that enables iterative solutions of electromagnetics problems with low complexity. Iterative solvers, however, are not robust for three-dimensional complex reallife problems unless suitable preconditioners are used. In this paper, we present our efforts to devise effective preconditioners for MLFMA solutions of difficult electromagnetics problems involving both conductors and dielectrics.

Suggestions

A Hierarchical Partitioning Strategy for an Efficient Parallelization of the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2009-06-01)
We present a novel hierarchical partitioning strategy for the efficient parallelization of the multilevel fast multipole algorithm (MLFMA) on distributed-memory architectures to solve large-scale problems in electromagnetics. Unlike previous parallelization techniques, the tree structure of MLFMA is distributed among processors by partitioning both clusters and samples of fields at each level. Due to the improved load-balancing, the hierarchical strategy offers a higher parallelization efficiency than previ...
A nested iterative scheme for computation of incompressible flows in long domains
Manguoğlu, Murat; Tezduyar, Tayfun E.; Sathe, Sunil (Springer Science and Business Media LLC, 2008-12-01)
We present an effective preconditioning technique for solving the nonsymmetric linear systems encountered in computation of incompressible flows in long domains. The application category we focus on is arterial fluid mechanics. These linear systems are solved using a nested iterative scheme with an outer Richardson scheme and an inner iteration that is handled via a Krylov subspace method. Test computations that demonstrate the robustness of our nested scheme are presented.
An interactive algorithm to find the most preferred solution of multi-objective integer programs
LOKMAN, BANU; Köksalan, Mustafa Murat; Korhonen, Pekka J.; Wallenius, Jyrki (Springer Science and Business Media LLC, 2016-10-01)
In this paper, we develop an interactive algorithm that finds the most preferred solution of a decision maker (DM) for multi-objective integer programming problems. We assume that the DM's preferences are consistent with a quasiconcave value function unknown to us. Based on the properties of quasiconcave value functions and pairwise preference information obtained from the DM, we generate constraints to restrict the implied inferior regions. The algorithm continues iteratively and guarantees to find the mos...
Fusion of Image Segmentations under Markov Random Fields
Karadag, Ozge Oztimur; Yarman Vural, Fatoş Tunay (2014-08-28)
In this study, a fast and efficient consensus segmentation method is proposed which fuses a set of baseline segmentation maps under an unsupervised Markov Random Fields (MRF) framework. The degree of consensus among the segmentation maps are estimated as the relative frequency of co-occurrences among the adjacent segments. Then, these relative frequencies are used to construct the energy function of an unsupervised MRF model. It is well-known that MRF framework is commonly used for formulating the spatial r...
A Meta-Heuristic Paradigm for solving the Forward Kinematics of 6-6 General Parallel Manipulator
Chandra, Rohitash; Frean, Marcus; Rolland, Luc (2009-12-18)
The forward kinematics of the general Gough platform, namely the 6-6 parallel manipulator is solved using hybrid meta-heuristic techniques in which the simulated annealing algorithm replaces the mutation operator in a genetic algorithm. The results are compared with the standard simulated annealing and genetic algorithm. It shows that the standard simulated annealing algorithm outperforms standard genetic algorithm in terms of computation time and overall accuracy of the solution on this problem. However, t...
Citation Formats
L. Gürel, T. Malas, and Ö. S. Ergül, “Preconditioning iterative MLFMA solutions of integral equations,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38248.