Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Query performance prediction for aspect weighting in search result diversification
Date
2014-01-01
Author
Ozdemiray, Ahmet Murat
Altıngövde, İsmail Sengör
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Accurate estimation of query aspect weights is an important issue to improve the performance of explicit search result diversification algorithms. For the first time in the literature, we propose using post-retrieval query performance predictors (QPPs) to estimate, for each aspect, the retrieval effectiveness on the candidate document set, and leverage these estimations to set the aspect weights. In addition to utilizing well-known QPPs from the literature, we also introduce three new QPPs that are based on score distributions and hence, can be employed for online query processing in real-life search engines. Our exhaustive experiments reveal that using QPPs for aspect weighting improves almost all state-of-the-art diversification algorithms in comparison to using a uniform weight estimator. Furthermore, the proposed QPPs are comparable or superior to the existing predictors in the context of aspect weighting.
Subject Keywords
İnformation systems
URI
https://hdl.handle.net/11511/38332
DOI
https://doi.org/10.1145/2661829.2661975
Collections
Department of Computer Engineering, Conference / Seminar