An evaluation of canonical forms for non-rigid 3D shape retrieval

2018-05-01
Pickup, David
Liu, Juncheng
Sun, Xianfang
Rosin, Paul L.
Martin, Ralph R.
Cheng, Zhiquan
Lian, Zhouhui
Nie, Sipin
Jin, Longcun
Shamai, Gil
Sahillioğlu, Yusuf
Kavan, Ladislav
Canonical forms attempt to factor out a non-rigid shape's pose, giving a pose-neutral shape. This opens up the possibility of using methods originally designed for rigid shape retrieval for the task of non-rigid shape retrieval. We extend our recent benchmark for testing canonical form algorithms. Our new benchmark is used to evaluate a greater number of state-of-the-art canonical forms, on five recent non-rigid retrieval datasets, within two different retrieval frameworks. A total of fifteen different canonical form methods are compared. We find that the difference in retrieval accuracy between different canonical form methods is small, but varies significantly across different datasets. We also find that efficiency is the main difference between the methods.
GRAPHICAL MODELS

Suggestions

A Distributed Heuristic Algorithm for the Rectilinear Steiner Minimal Tree Problem
Cinel, Sertac; Bazlamaçcı, Cüneyt Fehmi (Institute of Electrical and Electronics Engineers (IEEE), 2008-11-01)
Rectilinear Steiner minimal tree (RSMT) problem finds a minimum length tree that interconnects a given set of points by only horizontal and vertical line segments and by using extra points if necessary. In this paper, to speedup the RSMT construction, two recently developed successful heuristic algorithms, namely rectilinear steiner tree (RST) by Zhou and hatched greedy algorithm (BGA) by Kahng et al., have been used as the basis. Following a slight modification on RST, which led to a nonrecursive and a con...
Detail-Preserving Mesh Unfolding for Nonrigid Shape Retrieval
Sahillioğlu, Yusuf (2016-06-01)
We present a shape deformation algorithm that unfolds any given 3D shape into a canonical pose that is invariant to nonrigid transformations. Unlike classical approaches, such as least-squares multidimensional scaling, we preserve the geometric details of the input shape in the resulting shape, which in turn leads to a content-based nonrigid shape retrieval application with higher accuracy. Our optimization framework, fed with a triangular or a tetrahedral mesh in 3D, tries to move each vertex as far away f...
On endomorphisms of surface mapping class groups
Korkmaz, Mustafa (Elsevier BV, 2001-05-01)
In this paper, we prove that every endomorphism of the mapping class group of an orientable surface onto a subgroup of finite index is in fact an automorphism.
Some finite-dimensional backward shift-invariant subspaces in the ball and a related factorization problem
Alpay, D; Kaptanoglu, HT (2000-12-15)
Beurling's theorem characterizes subspaces of the Hardy space invariant under the forward-shift operator in terms of inner functions. In this Note we consider the case where the ball replaces the open unit desk and the reproducing kernel Hilbert space with reproducing kernel 1/(1-Sigma (N)(1) a(j)w(j)*) replaces the Hardy space. We give explicit formulas which generalize Blaschke products in the case of spaces of finite codimension. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier...
Monte Carlo analysis of ridged waveguides with transformation media
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Wiley, 2013-07-01)
A computational model is presented for Monte Carlo simulation of waveguides with ridges, by combining the principles of transformation electromagnetics and the finite methods (such as finite element or finite difference methods). The principle idea is to place a transformation medium around the ridge structure, so that a single and easy-to-generate mesh can be used for each realization of the Monte Carlo simulation. Hence, this approach leads to less computational resources. The technique is validated by me...
Citation Formats
D. Pickup et al., “An evaluation of canonical forms for non-rigid 3D shape retrieval,” GRAPHICAL MODELS, pp. 17–29, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38372.