New heuristics for the balanced k-Chinese postmen problem

2018-10-01
Limon, Yasemin
Azizoğlu, Meral
In this study, we consider a directed k-Chinese postmen problem that aims to balance the costs of the postmen, while maintaining the total cost as small as possible. We formulate the problem as a pure integer nonlinear programming model. We propose three solution algorithms that use efficient incorporation of the heuristic subtour elimination constraints. Our computational results have revealed the satisfactory performances of our heuristic solution algorithms.
International Journal of Planning and Scheduling

Suggestions

Exact solution approaches for the directed bi-objective chinese postman problem
Eroglu, Ezgi; Azizoğlu, Meral (2018-06-01)
In this study, we consider a directed bi-objective Chinese Postman Problem with two additive objectives (like total cost and total distance) and propose two solution approaches to generate all non-dominated objective vectors. The first approach, namely classical approach, uses the optimal solutions of the mixed integer linear programs and generates the non-dominated objective vectors’ set sequentially. The second approach, namely branch and bound algorithm takes its spirit from the optimal solutions of the ...
A branch and bound algorithm for project scheduling problem with discounted cash flows
COMERT, ALİCAN; Azizoğlu, Meral (2016-12-01)
In this study, we consider a project payment model with discounted cash flows. We assume that the client payment times are defined in the project contract. The activities are characterised by their processing times and costs that are incurred at their completion times. Our problem is to find the activity completion times so as to maximise the net present value of the client payments and activity costs. We show that the problem is strongly NP-hard. We formulate the problem as a mixed integer nonlinear progra...
A mixed integer model for optimization of discrete time cost tradeoff problem
Tatar, Ali Can; Bilir, Mert; Sönmez, Rifat; Atan, Sabri Tankut (null; 2016-06-25)
In construction projects, activity durations can be expedited by allocating additional resources. Decreasing activity durations by means of crashing, usually leads to increase in the direct expenses. This trade-off between time and cost is called as the time-cost trade-off problem. Since in practice many resources are available in discrete units, numerous research has focussed on the discrete version of this problem called the discrete time-cost trade-off problem (DTCTP). Achieving the project schedule that...
A Lagrangean relaxation based approach for the capacity allocation problem in flexible manufacturing systems
ÖZPEYNİRCİ, SELİN; Azizoğlu, Meral (Informa UK Limited, 2010-05-01)
This study considers the operation assignment and capacity allocation problem in flexible manufacturing systems. A set of operations is selected to be processed and assigned to the machines together with their required tools. The purchase or usage of the required tools incurs a cost. The machines have scarce time and tool magazine capacities. The objective is to maximize the total weight of the assigned operations minus the total tooling costs. We use Lagrangean relaxation approach to obtain upper and lower...
A biobjective hierarchical location-allocation approach for the regionalization of maternal-neonatal care
Karakaya, Sakir; Meral, Fatma Sedef (2022-02-01)
This study proposes a biobjective location-allocation model for the regionalization of maternal-neonatal care to increase both accessibility and cost-efficiency by minimizing total transportation costs to public in accessing services and total service costs to government simultaneously. The model is characterized by a three-level successively inclusive hierarchy with an integrated flow and bidirectional referrals. Since it is difficult to solve for the optimum in a reasonable time, three heuristics are deve...
Citation Formats
Y. Limon and M. Azizoğlu, “New heuristics for the balanced k-Chinese postmen problem,” International Journal of Planning and Scheduling, pp. 331–349, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38689.