Swarm Robotics as a Solution to Crops Inspection for Precision Agriculture

Download
2018-02-01
Carbone, Carlos
Garibaldi, Oscar
Kurt, Zöhre
This paper summarizes the concept of swarm robotics and its applicability to crop inspections. To increase the agricultural yield it is essential to monitor the crop health. Hence, precision agriculture is becoming a common practice for farmers providing a system that can inspect the state of the plants (Khosla and others, 2010). One of the rising technologies used for agricultural inspections is the use of unmaned air vehicles (UAVs) which are used to take aerial pictures of the farms so that the images could be processed to extract data about the state of the crops (Das et al., 2015). For this process both fixed wings and quadrotors UAVs are used with a preference over the quadrotor since it’s easier to operate and has a milder learning curve compared to fixed wings (Kolodny, 2017). UAVs require battery replacement especially when the environmental conditions result in longer inspection times (“Agriculture - Maximize Yields with Aerial Imaging,” n.d., “Matrice 100 - DJI Wiki,” n.d.). As a result, inspection systems for crops using commercial quadrotors are limited by the quadrotor´s maximum flight speed, maximum flight height, quadrotor´s battery time, crops area, wind conditions, etc. (“Mission Estimates,” n.d.).
KnE Engineering

Suggestions

Precision measurement of the structure of the CMS inner tracking system using nuclear interactions
Sirunyan, A. M.; et. al. (IOP Publishing, 2018-10-01)
The structure of the CMS inner tracking system has been studied using nuclear interactions of hadrons striking its material. Data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded in 2015 at the LHC are used to reconstruct millions of secondary vertices from these nuclear interactions. Precise positions of the beam pipe and the inner tracking system elements, such as the pixel detector support tube, and barrel pixel detector inner shield and support rails, are determined using thes...
Swarm-Bot: Pattern Formation in A Swarm Of Self-Assembling Mobile Robots
Şahin, Erol; Trianni, Vito; Deneubourg, Jean-louis; Rasse, Philip; Floreano, Dario; Gambardella, Luca; Mondada, Francesco; Nolfi, Stefano; Dorigo, Marco (2002-12-01)
In this paper we introduce a new robotic system, called swarm-bot. The system consists of a swarm of mobile robots with the ability to connect to/disconnect from each other to self-assemble into different kinds of structures. First, we describe our vision and the goals of the project. Then we present preliminary results on the formation of patterns obtained from a grid-world simulation of the system.
Cooperation control of three UAV’s for Aerial Rescue and Aerial Retrieval
Erkmen, Aydan Müşerref; Yavrucuk, İlkay (IEEE; 2009-12-14)
In this paper two new conceptual robotic system designs, called 'aerial-retrieval' and 'aerial-rescue' are presented and demonstrated by simulation results. The Unmanned air vehicles (UAV) used in this design are thrust vector controlled robotic systems. The 'aerial-retrieval' concept aims at entrapping and retrieving a (lost) floating object in the air. The second concept, 'aerial-rescue' aims at rescuing a free falling object (e.g. a person) in the air using a stretched net attached to the UAV's. Position...
Feedback motion planning of a novel fully actuated unmanned surface vehicle via sequential composition of random elliptical funnels
Özdemir, Oğuz; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2022-12-27)
This thesis proposes and analyzes a motion planning and control schema for unmanned surface vehicles that fuses sampling-based approaches’ probabilistic completeness with closed-loop approaches’ robustness. The Proposed schema is based on the sequential composition of elliptical funnels, and it consists of two stages: tree generation and motion control. For validation of the approach, we carried out experiments using both simulation and physical setup besides the mathematical analysis. In order to have a co...
Constant voltage, constant frequency operation of a self-excited induction generator
Çalışkan, Ahmet; Üçtuğ, Yıldırım; Department of Electrical and Electronics Engineering (2005)
In this thesis, control schemes for the self-excited induction generator are developed with Matlab/Simulink. Self-excited induction generator is considered as a constant voltage-constant frequency supply for an isolated load. A wind turbine is assumed to be the variable-speed drive of the induction generator. Control schemes aim to ensure a constant voltage-constant frequency operation of the induction generator in case of the variations in the wind speed and/or the load. From the general model of the self-...
Citation Formats
C. Carbone, O. Garibaldi, and Z. Kurt, “Swarm Robotics as a Solution to Crops Inspection for Precision Agriculture,” KnE Engineering, pp. 552–552, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38836.