Manipulation of atoms across a surface at room temperature

Download
2000-04-13
FİSHLOCK, T W
Oral, Ahmet
EGDELL, R G
PETHİCA, J B
Since the realization that the tips of scanning probe microscopes can interact with atoms at surfaces, there has been much interest in the possibility of building or modifying nanostructures or molecules directly from single atoms(1). Individual large molecules can be positioned on surfaces(2-4), and atoms can be transferred controllably between the sample and probe tip(5,6). The most complex structures(7-11) are produced at cryogenic temperatures by sliding atoms across a surface to chosen sites. But there are problems in manipulating atoms laterally at higher temperatures-atoms that are sufficiently well bound to a surface to be stable at higher temperatures require a stronger tip interaction to be moved. This situation differs significantly from the idealized weakly interacting tips(12,13) of scanning tunnelling or atomic force microscopes. Here we demonstrate that precise positioning of atoms on a copper surface is possible at room temperature. The triggering mechanism for the atomic motion unexpectedly depends on the tunnelling current density, rather than the electric field or proximity of tip and surface.

Suggestions

Simulation of carbon nanotube junction formations
Tasci, E; Malcıoğlu, Osman Barış; Erkoc, S (2003-09-12)
In this work we have examined the possible formation of a junction between two identical C(10,0) carbon nanotubes. One of the tubes was rotated 90 degrees with respect to the other. Simulation have been performed by means of a molecular-dynamics technique at 1K. For this purpose, we have introduced two stiff layers of graphite positioned above and below the nanotubes. By moving these layers we have created an effective force pushing the tubes closer to each other. In this simulation we have used a semi-empi...
Characteristics of nanoscale composites by terahertz spectroscopy
Altan, Hakan; Federici, John F; Lan, Aidong; Grebel, Haim (2003-07-29)
We have conducted visible pump-THz probe experiments on single wall carbon nanotubes (SWCNTs) on quartz substrates. Our results suggest an upper limit to the carrier-lifetime, which is on the order 1.5ps, limited only by the THz pulse duration. These experiments were repeated for ion-implanted, 3-4nm Si nanoclusters in quartz for which the carrier lifetime was also assessed at 1.5ps. THz time-domain spectroscopy (THz-TDS) of SWCNTs revealed that the THz pulse peak transmission changed under optical illumina...
Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
Ahdida, C.; et. al. (Springer Science and Business Media LLC, 2020-03-01)
The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a S...
Efficient and accurate electromagnetic analysis of three-dimensional nano-optical structures
Yazar, Şirin; Sür, Cem Gürkan; Solak, Birol; Eroğlu, Ömer; Altınoklu, Aşkın; Güler, Sadri; Gür, Uğur Meriç; Karaosmanoğlu, Barışcan; Ergül, Özgür Salih (2017-07-08)
We present computational analysis of optical nanostructures, including but not limited to frequency-selective surfaces, metamaterials, nanoantennas, nanowires, and photonic crystals. A rigorous implementation based on surface integral equations and the multilevel fast multipole algorithm is developed for the analysis of such three-dimensional complex structures, without resorting to infinity, self-similarity, periodicity or homogeneity assumptions. The developed simulation environment provides accurate anal...
Tuning the Center of Gravity of 3D Printed Artifacts
KELEŞ, Mert; Yaman, Ulaş (Elsevier BV; 2018-06-14)
In this study, we propose an Algorithms-Aided Design (AAD) approach to shift the center of gravity of 3D printed artifacts to a predefined location by creating a heterogeneous internal structure utilizing the same type of material. When the conventional design and fabrication pipeline of 3D printers and additive manufacturing machinery is employed, information about the interior of the artifacts is lost during the conversion of the design files to the STL file format. This de facto file standard only stores...
Citation Formats
T. W. FİSHLOCK, A. Oral, R. G. EGDELL, and J. B. PETHİCA, “Manipulation of atoms across a surface at room temperature,” NATURE, pp. 743–745, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39132.