Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem
Date
2010-01-01
Author
Göktepe, Serdar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
54
views
0
downloads
Cite This
This manuscript is concerned with a novel, unified finite element approach to fully coupled cardiac electromechanics. The intrinsic coupling arises from both the excitation-induced contraction of cardiac cells and the deformation-induced generation of current due to the opening of ion channels. In contrast to the existing numerical approaches suggested in the literature, which devise staggered algorithms through distinct numerical methods for the respective electrical and mechanical problems, we propose a fully implicit, entirely finite element-based modular approach. To this end, the governing differential equations that are coupled through constitutive equations are recast into the corresponding weak forms through the conventional isoparametric Galerkin method. The resultant non-linear weighted residual terms are then consistently linearized. The system of coupled algebraic equations obtained through discretization is solved monolithically. The put-forward modular algorithmic setting leads to an unconditionally stable and geometrically flexible framework that lays a firm foundation for the extension of constitutive equations towards more complex ionic models of cardiac electrophysiology and the strain energy functions of cardiac mechanics. The performance of the proposed approach is demonstrated through three-dimensional illustrative initial boundary-value problems that include a coupled electromechanical analysis of a biventricular generic heart model.
Subject Keywords
Mechanical Engineering
,
Computational Theory and Mathematics
,
Applied Mathematics
,
Ocean Engineering
,
Computational Mathematics
URI
https://hdl.handle.net/11511/39545
Journal
COMPUTATIONAL MECHANICS
DOI
https://doi.org/10.1007/s00466-009-0434-z
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation
Kotikanyadanam, Mohan; Göktepe, Serdar; Kuhl, Ellen (Wiley, 2010-05-01)
The objective of this work is the computational simulation of a patient-specific electrocardiogram (EKG) using a novel, robust, efficient, and modular finite element-based simulation tool for cardiac electrophysiology. We apply a two-variable approach in terms of a fast action potential and a slow recovery variable, whereby the latter phenomenologically summarizes the concentration of ionic currents. The underlying algorithm is based on a staggered solution scheme in which the action potential is introduced...
Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement
Manguoğlu, Murat; Sameh, Ahmed H.; Tezduyar, Tayfun E. (Springer Science and Business Media LLC, 2010-06-01)
Computation of incompressible flows in arterial fluid mechanics, especially because it involves fluid-structure interaction, poses significant numerical challenges. Iterative solution of the fluid mechanics part of the equation systems involved is one of those challenges, and we address that in this paper, with the added complication of having boundary layer mesh refinement with thin layers of elements near the arterial wall. As test case, we use matrix data from stabilized finite element computation of a b...
Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework
ÖZDEMİR, İZZET; Yalçınkaya, Tuncay (Springer Science and Business Media LLC, 2014-08-01)
This paper focuses on the continuum scale modeling of dislocation-grain boundary interactions and enriches a particular strain gradient crystal plasticity formulation (convex counter-part of Yal double dagger inkaya et al., J Mech Phys Solids 59:1-17, 2011; Int J Solids Struct 49:2625-2636, 2012) by incorporating explicitly the effect of grain boundaries on the plastic slip evolution. Within the framework of continuum thermodynamics, a consistent extension of the model is presented and a potential type non-...
Oscillation of solutions of second order mixed nonlinear differential equations under impulsive perturbations
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (Elsevier BV, 2011-02-01)
New oscillation criteria are obtained for second order forced mixed nonlinear impulsive differential equations of the form
Accurate numerical bounds for the spectral points of singular Sturm-Liouville problems over 0 < x < infinity
Taşeli, Hasan (Elsevier BV, 2004-03-01)
The eigenvalues of singular Sturm-Liouville problems defined over the semi-infinite positive real axis are examined on a truncated interval 0<x<l as functions of the boundary point l. As a basic theoretical result, it is shown that the eigenvalues of the truncated interval problems satisfying Dirichlet and Neumann boundary conditions provide, respectively, upper and lower bounds to the eigenvalues of the original problem. Moreover, the unperturbed system in a perturbation problem, where l remains sufficient...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Göktepe, “Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem,”
COMPUTATIONAL MECHANICS
, pp. 227–243, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39545.