Modeling of Asymmetric Shear Wall-Frame Building Structures

Download
2009-11-01
AKIŞ, TOLGA
Tokdemir, Turgut
Yılmaz, Çetin
Based on the conventional wide column analogy, two different three-dimensional shear wall models for open and closed sections are proposed. These approximate models are verified in comparison to not only the results available in the literature but also the ones obtained by Using models containing shell elements. With the help of these new models five different groups of shear wall-frame structures with different floor plans and different heights are analyzed. The first three natural vibration periods are determined and time history analyses are performed. The results Of these computations are observed to be in good agreement with those obtained by detailed models containing shell elements.
JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING

Suggestions

Nonlinear analysis of R/C low-rise shear walls
Mansour, Mohamad Y.; Dicleli, Murat; Lee, Jung Yoon (SAGE Publications, 2004-08-01)
An analysis method for predicting the response of low-rise shear walls under both monotonic and cyclic loading is presented in this paper. The proposed analysis method is based on the softened truss model theory but utilizes newly proposed cyclic constitutive relationships for concrete and steel bars obtained from cyclic shear testing. The successfulness of the analysis method, when combined with new materials constitutive relationships, is checked against the test results of 33 low-rise shear walls reporte...
Analytical prediction of thermal displacement capacity of integral bridges built on sand
Dicleli, Murat (SAGE Publications, 2005-02-01)
In this research, analytical equations are developed to calculate the lateral displacement capacity and maximum length limits of integral bridges built on sand based on the low-cycle fatigue performance of the piles under cyclic thermal variations and the ultimate strength of the abutment under positive thermal variations. To formulate the displacement capacity and maximum length limits of integral bridges based on the low cycle fatigue performance of steel H-piles under cyclic thermal variations, first, H-...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Effective flexural rigidities for ordinary reinforced concrete columns and beams
AVŞAR, ÖZGÜR; BAYHAN, BEYHAN; Yakut, Ahmet (Wiley, 2014-04-25)
Current effective flexural rigidities proposed for use in design and analyses of reinforced concrete structures have been examined. The level of accuracy in the estimation of section rigidity plays a very important role in determining realistic values for the structural stiffness and hence the seismic forces imposed. The most significant parameters influencing the effective rigidity, which reflects the effect of cracking as well as the theoretical yielding of reinforced concrete sections, have been determin...
An alternative frame-shear wall model: continuum formulation
KAZAZ, İLKER; Gulkan, Polat (Wiley, 2012-07-01)
The basic assumption of the analysis of wall-frame structures is that two dissimilar structural systems, deforming in shear and flexural modes, are constrained to act together. The same set of boundary conditions is also assumed to be applicable to both types of components. An inconsistency arises when the rotation at the lower end of the combined beam is assumed to be zero because this boundary condition is applicable only to the flexural component of deformation. For the shear component that is related to...
Citation Formats
T. AKIŞ, T. Tokdemir, and Ç. Yılmaz, “Modeling of Asymmetric Shear Wall-Frame Building Structures,” JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING, pp. 531–538, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40385.