A conducting composite of polypyrrole with ultrahigh molecular weight polyethylene foam

1999-06-28
Aydinli, B
Toppare, Levent Kamil
Tincer, T
Through a chemical polymerization of pyrrole inside ultrahigh molecular weight polyethylene (UHMWPE) foam, a conducting polymer composite was obtained. To produce conductive polymer foams, successive imbibiting of reactives, FeCl3 and pyrrole in tetrahydrofuran solutions, were carried out. The conductive polymeric materials were characterized by FTIR, DSC, and SEM. Mechanical property measurements were carried out on the films prepared by the compression molding of the conductive foam polymers. These films showed rather high tensile strength compared to pure UHMWPE. Conductivity determined by a two-probe technique showed that it increased with the pyrrole content in the UHMWPE foam matrix. The compression molding, however, resulted in a considerable reduction in the conductivities. (C) 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1843-1850, 1999.

Suggestions

A conducting composite of polythiophene: Synthesis and characterization
Vatansever, Fatma; Hacaloğlu, Jale; Akbulut, Ural; Toppare, Levent Kamil (1996-01-01)
Conducting polymer composites of polythiophene, using a polyamide as the insulating matrix, were prepared via electrochemical methods. The characterization of the composite was done by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared and pyrolysis studies. The conductivities were measured by a four-probe technique. The cited methods revealed that the composites have properties different from those of simple mechanical mixtures of the two...
A novel conducting polymer based on terthienyl system bearing strong electron-withdrawing substituents and its electrochromic device application
Asil Alptekin, Demet; Algı, Fatih; Önal, Ahmet Muhtar (Elsevier BV, 2008-7)
A novel conducting polymer bearing strong electron-withdrawing substituents (EWS) directly attached to the 3,4-positions of the thiophene ring was synthesized by electrochemical polymerization of diethyl 2,5-di(thiophen-2-yl)thiophene-3,4-dicarboxylate (SSS-Diester). The polymer (PSSS-Diester) was characterized by cyclic voltammetry, FT-IR and UV-vis spectroscopy. The polymer has a reversible redox process and demonstrates a stable electrochromic behavior: reddish orange in the neutral state, brown in the i...
An amperometric acetylcholine biosensor based on a conducting polymer
Kanik, Fulya Ekiz; Kolb, Marit; TİMUR, SUNA; Bahadir, Muefit; Toppare, Levent Kamil (Elsevier BV, 2013-08-01)
An amperometric acetylcholine biosensor was prepared by the generation of the conducting polymer poly(4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine) (poly(SNS-NH2)) on graphite electrodes. For pesticide detection, the enzymes acetylcholinesterase (AChE) and choline oxidase (ChO) were co-immobilized onto the conducting polymer poly(SNS-NH2) films using covalent binding technique. Electrochemical polymerization was carried out using a three-electrode cell configuration via cyclic voltammetry. Characteri...
A promising enzyme anchoring probe for selective ethanol sensing in beverages
Soylemez, Saniye; Goker, Seza; Toppare, Levent Kamil (Elsevier BV, 2019-07-15)
A newly designed amperometric biosensor for the determination of ethanol through one-step electrochemical coating of (4,7-di(thiophen-2-yl)benzo[c][1,2,5]selenadiazole-co-1H-pyrrole-3-carboxylic acid) (TBeSe-co-P3CA) on a graphite electrode is presented. It was aimed to propose a newly synthesized copolymer with enhanced biosensing properties as a novel sensor for the quantification of ethanol. The conjugated copolymer (TBeSe-co-P3CA) was prepared through electrochemical polymerization by potential cycling....
A pyrolysis mass spectrometry study of polythiophene - Natural rubber and polythiophene - Synthetic rubber conducting polymer composites
Yigit, S.; Hacaloğlu, Jale; Akbulut, Ural; Toppare, Levent Kamil (1997-01-01)
The thermal behaviors and degradation products of conducting polymer composites prepared by electrooxidation of thiophene using natural rubber or synthetic rubber as the insulating matrix were studied by direct and indirect mass spectrometry techniques. The pyrolysis mass data revealed that a chemical interaction formed between the components of the composites during polymerization. Thermal characteristics of rubbers totally disappeared in the composites indicating presence of some chain scissions leading t...
Citation Formats
B. Aydinli, L. K. Toppare, and T. Tincer, “A conducting composite of polypyrrole with ultrahigh molecular weight polyethylene foam,” JOURNAL OF APPLIED POLYMER SCIENCE, pp. 1843–1850, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40534.