Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Multiplex enumeration ofEscherichia coliandSalmonella enteritidisin a passive capillary microfluidic chip
Date
2020-08-01
Author
Dogan, Uzeyir
Kasap, Esin Nagihan
Sucularli, Ferah
Yıldırım, Ender
Tamer, Ugur
Cetin, Demet
Suludere, Zekiye
BOYACI, İSMAİL HAKKI
Ertas, Nusret
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
Cite This
Multiplex detection and quantification of bacteria in water by using portable devices are particularly essential in low and middle-income countries where access to clean drinking water is limited. Addressing this crucial problem, we report a highly sensitive immunoassay sensor system utilizing the fluorescence technique with magnetic nanoparticles (MNPs) to separate target bacteria and two different types of quantum dots (CdTe and Ni doped CdTe QDs) incorporated into a passive microfluidic chip to transport and to form sandwich complexes for the detection of two target bacteria, namelyEscherichia coli(E. coli) andSalmonella enteritidis(S. enteritidis) in less than 60 min. The assay is carried out on a capillary driven microfluidic chip that can be operated by merely pipetting the samples and reagents, and fluorescence measurements are done by using a handheld fluorescence spectrophotometer, which renders the system portable. The linear range of the method was found to be 10(1)to 10(5)cfu mL(-1)for bothE. coliandS. enteritidis. The limit of detection (LOD) was calculated to be 5 and 3 cfu mL(-1)forE. coliandS. enteritidis, respectively. The selectivity of the method was examined by testingEnterobacter dissolvens(E. dissolvens) andStaphylococcus aureus(S. aureus) samples, and no significant interference was observed. The method was also demonstrated to detect bacteria in tap water and lake water samples spiked with target bacteria.
Subject Keywords
General Engineering
,
Analytical Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/40659
Journal
ANALYTICAL METHODS
DOI
https://doi.org/10.1039/d0ay01030h
Collections
Department of Mechanical Engineering, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Dogan et al., “Multiplex enumeration ofEscherichia coliandSalmonella enteritidisin a passive capillary microfluidic chip,”
ANALYTICAL METHODS
, vol. 12, no. 30, pp. 3788–3796, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40659.