Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Intra Prediction Based on Markov Process Modeling of Images
Date
2013-10-01
Author
Kamışlı, Fatih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
144
views
0
downloads
Cite This
In recent video coding standards, intraprediction of a block of pixels is performed by copying neighbor pixels of the block along an angular direction inside the block. Each block pixel is predicted from only one or few directionally aligned neighbor pixels of the block. Although this is a computationally efficient approach, it ignores potentially useful correlation of other neighbor pixels of the block. To use this correlation, a general linear prediction approach is proposed, where each block pixel is predicted using a weighted sum of all neighbor pixels of the block. The disadvantage of this approach is the increased complexity because of the large number of weights. In this paper, we propose an alternative approach to intraprediction, where we model image pixels with a Markov process. The Markov process model accounts for the ignored correlation in standard intraprediction methods, but uses few neighbor pixels and enables a computationally efficient recursive prediction algorithm. Compared with the general linear prediction approach that has a large number of independent weights, the Markov process modeling approach uses a much smaller number of independent parameters and thus offers significantly reduced memory or computation requirements, while achieving similar coding gains with offline computed parameters.
Subject Keywords
Software
,
Computer Graphics and Computer-Aided Design
URI
https://hdl.handle.net/11511/40844
Journal
IEEE TRANSACTIONS ON IMAGE PROCESSING
DOI
https://doi.org/10.1109/tip.2013.2264679
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
MARS - A TOOL-BASED MODELING, ANIMATION, AND PARALLEL RENDERING SYSTEM
AKTIHANOGLU, M; OZGUC, B; AYKANAT, C (Springer Science and Business Media LLC, 1994-01-01)
This paper describes a system for modeling, animating, previewing and rendering articulated objects. The system has a modeler of objects that consists of joints and segments. The animator interactively positions the articulated object in its stick, control vertex, or rectangular prism representation and previews the motion in real time. Then the data representing the motion and the models is sent to a multicomputer [iPSC/2 Hypercube (Intel)]. The frames are rendered in parallel, exploiting the coherence bet...
1-D Transforms for the Motion Compensation Residual
Kamışlı, Fatih (Institute of Electrical and Electronics Engineers (IEEE), 2011-04-01)
Transforms used in image coding are also commonly used to compress prediction residuals in video coding. Prediction residuals have different spatial characteristics from images, and it is useful to develop transforms that are adapted to prediction residuals. In this paper, we explore the differences between the characteristics of images and motion compensated prediction residuals by analyzing their local anisotropic characteristics and develop transforms adapted to the local anisotropic characteristics of t...
Geometry-Aware Neighborhood Search for Learning Local Models for Image Superresolution
Ferreira, Julio Cesar; Vural, Elif; Guillemot, Christine (Institute of Electrical and Electronics Engineers (IEEE), 2016-03-01)
Local learning of sparse image models has proved to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean distance may not always be a good dissimilarity measure for comparing data samples lying on a manifold. In this paper, we propose two algorithms for determining a local subset of training samples from which a good...
Discretization of Parametrizable Signal Manifolds
Vural, Elif (Institute of Electrical and Electronics Engineers (IEEE), 2011-12-01)
Transformation-invariant analysis of signals often requires the computation of the distance from a test pattern to a transformation manifold. In particular, the estimation of the distances between a transformed query signal and several transformation manifolds representing different classes provides essential information for the classification of the signal. In many applications, the computation of the exact distance to the manifold is costly, whereas an efficient practical solution is the approximation of ...
Minimization of Monotonically Levelable Higher Order MRF Energies via Graph Cuts
Karci, Mehmet Haydar; Demirekler, Mübeccel (Institute of Electrical and Electronics Engineers (IEEE), 2010-11-01)
A feature of minimizing images of submodular binary Markov random field (MRF) energies is introduced. Using this novel feature, the collection of minimizing images of levels of higher order, monotonically levelable multilabel MRF energies is shown to constitute a monotone collection. This implies that these minimizing binary images can be combined to give minimizing images of the multilabel MRF energies. Thanks to the graph cuts framework, the mentioned class of binary MRF energies is known to be minimized ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Kamışlı, “Intra Prediction Based on Markov Process Modeling of Images,”
IEEE TRANSACTIONS ON IMAGE PROCESSING
, pp. 3916–3925, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40844.