Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique
Date
2013-10-10
Author
Nakas, G. Ipek
Dericioğlu, Arcan Fehmi
Bor, Sakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
TiNi foams with porosity contents varying in the range of 39-58 vol% were processed by sintering with space holder technique. Magnesium was employed as the space holder material because of its relatively low boiling temperature as well as high oxygen affinity. Processed foams were characterized in terms of both microstructural and mechanical aspects. Scanning electron microscope (SEM), X-ray diffractometer (XRD) and transmission electron microscope (TEM) were employed for microstructure and phase analyses while mechanical characterization of the foams was conducted via monotonic compression and superelasticity cycles both conducted at room temperature. It was observed that homogeneity of the microstructural features as well as high oxygen affinity of the magnesium, which had prevented the oxidation of TiNi during sintering, led to outstanding mechanical properties especially considering the porosity contents achieved as high as 58 vol%. A deformation model for TiNi foams under compression was proposed encompassing the variation in their compression response at different porosity contents. Furthermore, superelastic behavior of processed TiNi foams were examined in detail to reveal the deformation mechanism that is active at each stage of deformation, and effect of porosity and previous training at lower stress levels was also investigated seperately.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/41246
Journal
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
DOI
https://doi.org/10.1016/j.msea.2013.06.011
Collections
Department of Metallurgical and Materials Engineering, Article