Elastica-based strain energy functions for soft biological tissue

Download
2008-04-01
Krishna, Garikipati
Göktepe, Serdar
Christian, Miehe
Continuum strain energy density functions are developed for soft biological tissues that possess slender, fibrillar components. The treatment is based on the model of an elastica, which is our fine scale model, and is homogenized in a simple fashion to obtain a continuum strain energy density function. Notably, we avoid solving the exact, fourth-order, non-linear, partial differential equation for deformation of the elastica by resorting to other assumptions, kinematic and energetic, on the response of individual, elastica-like fibrils. The formulation, discussion of responses of different models and comparison with experiment are presented.
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS

Suggestions

Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering
Dalgıç, Ali Deniz; Karataş, Ayten; Tezcaner, Ayşen; Keskin, Dilek (Elsevier BV, 2019-07-01)
Tissue engineering can benefit from wide variety of materials produced by microorganisms. Natural origin materials often possess good biocompatibility, biodegradability with sustainable production by microorganisms. A phytoplankton, diatom, produces an amorphous silica shell that can be obtained by a cost efficient production process. Diatom shells (DS) are promising for bone tissue engineering since silicon enhances bone regeneration. Biocompatible and biodegradable biopolymers with microorganism origin ca...
Size-independent strength of amorphous-HCP crystalline metallic nanolayers
Abboud, Mohammad; Özerinç, Sezer (Cambridge University Press (CUP), 2019-07-15)
Amorphous/crystalline (A/C) nanolayers provide an effective model system to study the mechanical behavior and size effects of metallic glasses and crystalline metals in confined geometries. In this work, we experimentally investigated the structure-property relationship in A/C nanolayers containing HCP crystalline layers. CuTi/Ti and CuZr/Zr nanolayers were prepared by magnetron sputtering with layer thicknesses in the range 10-100 nm. The hardness values of the CuTi/Ti and CuZr/Zr nanolayers were close to ...
Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity
MIEHE, CHRISTIAN; LAMBRECHT, MATTHIAS; Gürses, Ercan (Elsevier BV, 2004-12-01)
We propose an approach to the definition and analysis of material instabilities in rate-independent standard dissipative solids at finite strains based on finite-step-sized incremental energy minimization principles. The point of departure is a recently developed constitutive minimization principle for standard dissipative materials that optimizes a generalized incremental work function with respect to the internal variables. In an incremental setting at finite time steps this variational problem defines a ...
Structural, electrical and anisotropic properties of Tl4Se3S chain crystals
QASRAWI, ATEF FAYEZ HASAN; Hasanlı, Nızamı (Elsevier BV, 2009-10-01)
The structure, the anisotropy effect on the current transport mechanism and the space charge limited current in Tl4Se3S chain crystals have been studied by means of X-ray diffraction, electrical conductivity measurements along and perpendicular to the crystal's c-axis and the current voltage characteristics. The temperature-dependent electrical conductivity analysis in the region of 150-400 K, revealed the domination of the thermionic emission of charge carriers over the chain boundaries above 210 and 270 K...
Delamination of compressively stressed orthotopic functionally graded material coatings under thermal loading
YILDIRIM, BORA; Yilmaz, Suphi; Kadıoğlu, Fevzi Suat (ASME International, 2008-09-01)
The objective of this study is to investigate a particular type of crack problem in a layered structure consisting of a substrate, a bond coat, and an orthotropic functionally graded material coating. There is an internal crack in the orthotropic coating layer. It is parallel to the coating bond-coat interface and perpendicular to the material gradation of the coating. The position of the crack inside the coating is kept as a variable. Hence, the case of interface crack is also addressed. The top and bottom...
Citation Formats
G. Krishna, S. Göktepe, and M. Christian, “Elastica-based strain energy functions for soft biological tissue,” JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, pp. 1693–1713, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41832.