Controller area network with priority queues and FIFO queues: improved schedulability analysis and message set extension

2016-01-01
SCHMİDT, KLAUS WERNER
Schmidt, Klaus Verner
Schmidt, Şenan Ece
Karani, Duygu Culum
Karakaya, Utku
Controller area network (CAN) enables communication of electronic control units (ECUs) via messages using priority-based arbitration, which requires the implementation of priority queues (PQs) in the ECU device driver. Nevertheless, it is possible that not all ECUs on a CAN support PQs but use FIFO queues (FQs) instead. In this case, the classical CAN scheduling model with PQs is not suitable for the computation of message worst-case responsetimes (WCRTs) that are essential for verifying the correct vehicle operation. This paper considers an existing scheduling model for CAN with both PQs and FQs. First, an improved algorithm for speeding up the WCRT computation is proposed. Second, the practical case where an existing CAN message set is extended by new messages is addressed. An original algorithm for assigning priorities to new messages while keeping the priority order of existing messages is developed. Both algorithms are evaluated by computational experiments.
INTERNATIONAL JOURNAL OF VEHICLE DESIGN

Suggestions

Systematic message schedule construction for time-triggered CAN
Schmidt, Klaus Verner; Schmidt, Şenan Ece (Institute of Electrical and Electronics Engineers (IEEE), 2007-11-01)
The most widely used standard for in-vehicle communication networks that interconnect electronic control units is the controller area network (CAN). However, the event-triggered architecture of CAN introduces several issues, such as predictability, signal jitter, and reliability. Different time-triggered networks. are being developed to address these issues. In this paper, we focus on time-triggered CAN (TTCAN), which achieves time-triggered behavior by implementing time-division multiple access on the exis...
Robust Priority Assignments for Extending Existing Controller Area Network Applications
Schmidt, Klaus Verner (Institute of Electrical and Electronics Engineers (IEEE), 2014-02-01)
The usage of the controller area network (CAN) as an in-vehicle communication bus requires finding feasible and robust priority orders such that each message transmitted on the bus meets its specified deadline and tolerates potential transmission errors. Although such priority orders can be determined by available algorithms whenever they exist, it is always assumed that a CAN priority order is computed from scratch. In practical applications, it is frequently necessary to extend an existing message set by ...
Message Scheduling for the FlexRay Protocol: The Dynamic Segment
Schmidt, Şenan Ece; Schmidt, Klaus Verner (Institute of Electrical and Electronics Engineers (IEEE), 2009-06-01)
The FlexRay communication protocol is expected to be the de facto standard for high-speed, in-vehicle communication. In this paper, we formally investigate the scheduling problem for the dynamic segment (DS) of FlexRay. We take the bounds on the generation times and the timing requirements of the signals into consideration to propose a reservation-based scheduling approach that preserves the flexible medium access of the DS. To obtain efficient schedules, we formulate a nonlinear integer program- ming probl...
Transmit Precoding for Flat-Fading MIMO Multiuser Systems With Maximum Ratio Combining Receivers
Coskun, Adem; Candan, Çağatay (Institute of Electrical and Electronics Engineers (IEEE), 2011-02-01)
We examine the application of transmit precoding in multiuser multi-input-multi-output (MIMO) communication systems with maximum ratio combining (MRC) receivers. In many multiuser applications, the maximum-likelihood or minimum mean-square error (MMSE) receivers can be prohibitive to implement due to their high implementation complexity. We examine the performance of the system with simple MRC receivers and carefully selected precoders, which are designed to compensate the lack of high-complexity receivers,...
Simultaneous localization and mapping for a mobile robot operating in outdoor environments
Sezginalp, Emre; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2007)
In this thesis, a method to the solution of autonomous navigation problem of a robot working in an outdoor application is sought. The robot will operate in unknown terrain where there is no a priori map present, and the robot must localize itself while simultaneously mapping the environment. This is known as Simultaneous Localization and Mapping (SLAM) problem in the literature. The SLAM problem is attempted to be solved by using the correlation between range data acquired at different poses of the robot. A...
Citation Formats
K. W. SCHMİDT, K. V. Schmidt, Ş. E. Schmidt, D. C. Karani, and U. Karakaya, “Controller area network with priority queues and FIFO queues: improved schedulability analysis and message set extension,” INTERNATIONAL JOURNAL OF VEHICLE DESIGN, pp. 335–357, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41912.