Minimization of Ground Vibration Test Configurations for F-16 Aircraft by Subtractive Modification

Download
2019-01-01
Koksal, Sertac
Yildiz, Erdinc Nuri
Yazıcıoğlu, Yiğit
Özgen, Gökhan Osman
The certification process of external loads designed for aircraft needs to satisfy various criteria where compatibility with existing systems is one of the essential requirements. Flight flutter testing is a critical part of a certification process that requires many preliminary studies. Computational flutter analysis must precede actual flutter test to determine an approximately safe flight envelope to ensure the safety of the personnel and aircraft. To be able to perform flutter analysis of an aircraft, an accurate structural model such as finite element (FE) model is required. An accurate FE model can be obtained from a coarse model using ground vibration test (GVT) which is also the primary test campaign for certification of a new external load, new aircraft design, or modification on existing aircraft. On the other hand, performing GVT for each configuration of an aircraft is both time consuming and costly. It would be more practical to determine the critical configurations for an aircraft using computational tools and perform actual GVT for those configurations. The objective of this study is to simulate GVT characteristics for downloading and fuel configurations of F-16 aircraft. A novel methodology is proposed where various loading configurations can be simulated by subtractive modification from loaded GVT data so that joint stiffnesses between stores and aircraft need not be identified. The proposed technique decreases the number of necessary physical GVT testing campaigns.
Shock and Vibration

Suggestions

Internal ballistic design optimization of a solid rocket motor
Açık, Sevda; Dursunkaya, Zafer; Department of Mechanical Engineering (2010)
Design process of a solid rocket motor with the objective of meeting certain mission requirements can be specified as a search for a best set of design parameters within the overall design constraints. In order to ensure that the best possible design amongst all achievable designs is being achieved, optimization is required during the design process. In this thesis, an optimization tool for internal ballistic design of solid rocket motors was developed. A direct search method Complex algorithm is used in th...
Design and analysis of fixturing in assembly of sheet metal components of helicopters
Bayar, Fatih Mehmet; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2007)
Assembling of the compliant parts used in aviation industry is a challenging process. Assembly fixtures are quite important tools in this effort and widely used in industry. In fixturing of easily deformable sheet metal parts, besides restraining the rigid body motion of the parts, the possible deformations that may occur during the assembly process and the spring-back effect on the final product need to be taken in to consideration. In order to guarantee a successful assembling, in other words, to obtain t...
Aeroelastic stability prediction using flutter flight test data
Yıldız, Erdinç Nuri; Platin, Bülent Emre; Department of Mechanical Engineering (2007)
Flutter analyses and tests are the major items in flight certification efforts required when a new air vehicle is developed or when a new external store is developed for an existing aircraft. The flight envelope of a new aircraft as well as the influence of aircraft modifications on an existing flight envelope can be safely determined only by flutter tests. In such tests, the aircraft is instrumented by accelerometers and exciters. Vibrations of the aircraft at specific dynamic pressures are measured and tr...
Optimal external configuration design of missiles
Tanıl, Çağatay; Platin, Bülent Emre; Department of Mechanical Engineering (2009)
The main area of emphasis in this study is to investigate the methods and technology for aerodynamic configuration sizing of missiles and to develop a software platform in MATLAB® environment as a design tool which has an ability of optimizing the external configuration of missiles for a set of flight requirements specified by the user through a graphical user interface. A genetic algorithm based optimization tool is prepared by MATLAB is expected to help the designer to find out the best external geometry ...
Probabilistic assessment of liquefaction-induced lateral ground deformations
Al Bawwab, Wa'el Mohammad Kh; Çetin, Kemal Önder; Department of Civil Engineering (2005)
A new reliability-based probabilistic model is developed for the estimation of liquefaction-induced lateral ground spreading, taking into consideration the uncertainties within the model functional form and the descriptive variables as well. The new model is also introduced as performance-based probabilistic engineering tool.
Citation Formats
S. Koksal, E. N. Yildiz, Y. Yazıcıoğlu, and G. O. Özgen, “Minimization of Ground Vibration Test Configurations for F-16 Aircraft by Subtractive Modification,” Shock and Vibration, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42308.