Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

Download
2011-10-01
Genisel, Mustafa Fatih
Uddin, Md Nizam
Say, Zafer
Kulakci, Mustafa
Turan, Raşit
GÜLSEREN, Oğuz
BENGÜ, Erman
In this study, we implanted N+ and N-2(+) ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C+ ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantation were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3638129]
JOURNAL OF APPLIED PHYSICS

Suggestions

Optical characterization of silicon based hydrogenated amorphous thin films by un-visible and infrared measurements
Kılıç, İlker; Katırcıoğlu, Bayram; Department of Physics (2006)
Various carbon content hydrogenated amorphous silicon carbide (a-Si1ŁxCx:H) and hydrogenated amorphous silicon (a-Si:H) thin films have been deposited on various substrates by using plasma enhanced chemical vapour deposition (PECVD) technique. Transmission spectra of these films have been determined within UV-Visible region and the obtained data were analysed to find related physical constants such as; refractive indices, thicknesses, etc. Fourier transform infrared (FT-IR) spectrometry technique has been u...
Active carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitors
ATEŞ, MURAT; Cinar, Damla; Caliskan, Sinan; GEÇGEL, ÜNAL; ÜNER, OSMAN; BAYRAK, YÜKSEL; Candan, Idris (Informa UK Limited, 2016-01-01)
Activated carbons (ACs) are successfully synthesized from Elaeagnus grain by a simple chemical synthesis methodology and demonstrated as novel, suitable supercapacitor electrode materials for graphene hydrogel (GH)/AC nanocomposites. GH/AC nanocomposites are synthesized via hydrothermal process at temperature of 180 degrees C. The low-temperature thermal exfoliation approach is convenient for mass production of graphene hydrogel (GH) at low cost and it can be used as electrode material for energy storage ap...
Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites
WOLOWSKI, JERY; BADZIAK, JAN; CZARNECKA, ANNA; PARYS, PİETR; PISAREK, MARCİN; ROSINSKI, MARCİN; Turan, Raşit; Yerci, Selçuk (2007-03-01)
This work describes the application of laser ion source (LIS) for fabrication of semiconductor nanostructures, as well as relevant equipment completed and tested in the IPPLM for the EU STREP "SEMINANO" project and the obtained experimental results. A repetitive Pulse laser system of parameters: energy of similar to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 mu m, repetition rate of up to 10 Hz and intensity on the target of up to 10(11) W/cm(2), has been employed to produce Ge ions intended for ion implan...
Kinetic investigation of chemical vapor deposition of B4C on tungsten substrate
Karaman, Mustafa; Sezgi, Naime Aslı; Doğu, Timur; Ozbelge, H. Onder (2006-12-01)
Production of beta-rhombohedral boron carbide (B4C) on a tungsten substrate by the chemical vapor deposition from a BCl3-H-2-CH4 gas mixture was achieved. An impinging-jet reactor was used to minimize the mass-transfer limitations on the reaction kinetics, which made a detailed kinetic investigation possible. Results of the XRD and XPS analyses showed that the solid product formed on the substrate is a rhombohedral B4C phase. Both dichloroborane and boron carbide formation rates were found to increase with ...
Study of W boson production in pPb collisions at root(NN)-N-S=5.02 TeV
Adam, W.; et. al. (Elsevier BV, 2015-11-01)
The first study of W boson production in pPb collisions is presented, for bosons decaying to a muon or electron, and a neutrino. The measurements are based on a data sample corresponding to an integrated luminosity of 34.6 nb(-1) at a nucleon-nucleon centre-of-mass energy of root(NN)-N-S = 5.02 TeV, collected by the CMS experiment. The W boson differential cross sections, lepton charge asymmetry, and forward-backward asymmetries are measured for leptons of transverse momentum exceeding 25 GeV/c, and as a fu...
Citation Formats
M. F. Genisel et al., “Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films,” JOURNAL OF APPLIED PHYSICS, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42557.