Nanotitania-Supported Rhodium(0) Nanoparticles: Superb Catalyst in Dehydrogenation of Dimethylamine Borane

Tanyildizi, Seda
Özkar, Saim
Rhodium(0) nanoparticles, in situ formed from the reduction of rhodium(II) octanoate in toluene solution, are active catalyst in dehydrogenation of dimethylamine borane, however not very stable. When the same nanoparticle formation reaction is performed in the presence of nanotitania it yields the supported rhodium(0) nanoparticles (Rh(0)/nanoTiO(2)) with an average size of 3.17 +/- 0.52 nm, which can be isolated and characterized by a combination of analytical techniques including inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) surface area measurement. Rh(0)/nanoTiO(2) is highly active and long lived catalyst providing 9700 turnovers in releasing 1 equivalent H2 from dimethylamine borane over 27 h before deactivation and a record initial turnover frequency (TOF) value of 2900 h(-1) in H-2 generation at 60.0 +/- 0.5 degrees C, which is the highest TOF value ever reported for dehydrogenation of dimethylamine borane using homogeneous or heterogeneous catalyst. Rh(0)/nanoTiO(2) is also quite reusable catalyst preserving 57% of the initial catalytic activity even after the fourth run of dehydrogenation reaction. This report also includes the results of kinetic study on the catalytic dehydrogenation of dimethylamine borane depending on the temperature and catalyst concentration.


Oleylamine-Stabilized Copper(0) Nanoparticles: An Efficient and Low-Cost Catalyst for the Dehydrogenation of Dimethylamine Borane
DUMAN, SİBEL; Özkar, Saim (2017-07-07)
Copper(0) nanoparticles, in situ generated from the reduction of copper(II) 2-ethylhexanoate during the dehydrogenation of dimethylamine borane (DMAB) at 50.0 +/- 0.1 degrees C in toluene solution, are active catalysts in hydrogen generation from DMAB, but not very stable against agglomeration. Addition of 5.0 equivalents of oleylamine (OAm) was found to stabilize copper(0) nanoparticles noticeably, while maintaining high catalytic activity. Oleylamine-stabilized copper(0) nanoparticles could be isolated fr...
Nanoalumina supported palladium(0) nanoparticle catalyst for releasing H-2 from dimethylamine borane
KARABOĞA, SEDA; Özkar, Saim (2019-09-01)
Palladium(II) 2,4-pentanedionate, impregnated on alumina nanopowder, was reduced by dimethylamine borane (DMAB) forming Pd(0) nanoparticles (NPs) at room temperature. Pd(0) NPs could be isolated from solution and characterized by ATR-IR, UV-vis, XRD, SEM, TEM, XPS and BET. The results obtained from TEM images reveal the formation of palladium(0) nanoparticles on gamma-alumina, having a mean particle size of 7.1 +/- 2.6 nm. Alumina supported Pd(0) NPs with various metal loadings were employed as catalyst in ...
Ruthenium(0) Nanoparticles Supported on Multiwalled Carbon Nanotube As Highly Active Catalyst for Hydrogen Generation from Ammonia-Borane
Akbayrak, Serdar; Özkar, Saim (2012-11-01)
Ruthenium(0) nanoparticles supported on multiwalled carbon nanotubes (Ru(0)@MWCNT) were in situ formed during the hydrolysis of ammonia-borane (AB) and could be isolated from the reaction solution by filtration and characterized by ICP-OES, XRD, TEM, SEM, EDX, and XPS techniques. The results reveal that ruthenium(0) nanoparticles of size in the range 1.4-3.0 nm are well-dispersed on multiwalled carbon nanotubes. They were found to be highly active catalyst in hydrogen generation from the hydrolysis of AB wi...
Magnetically Separable Rh-0/Co3O4 Nanocatalyst Provides over a Million Turnovers in Hydrogen Release from Ammonia Borane
Akbayrak, Serdar; Tonbul, Yalcin; Özkar, Saim (2020-03-16)
Cobalt(II,III) oxide nanopowders are used as supporting materials for rhodium(0) nanoparticles forming Rh-0/Co3O4 nanocatalysts, which can be prepared by impregnation and sodium borohydride reduction of Rh3+ ions on the surface of the oxide support. Magnetically separable Rh-0/Co3O4 nanoparticles are isolated from the reaction medium by an external magnet and characterized using various analytical techniques. Rh-0/Co3O4 nanoparticles are highly active and reusable catalysts with a long lifetime in hydrolyti...
Nanoalumina-supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (2017-10-01)
Rhodium(0) nanoparticles were in situ formed from the reduction of rhodium(II) octanoate and supported on the surface of nanoalumina yielding Rh(0)/nanoAl(2)O(3) which is highly active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. The kinetics of nanoparticle formation can be followed just by monitoring the volume of hydrogen gas evolved from the methanolysis of ammonia borane. The evaluation of the kinetic data gives valuable insights to the slow, continuous n...
Citation Formats
S. Tanyildizi, İ. MORKAN, and S. Özkar, “Nanotitania-Supported Rhodium(0) Nanoparticles: Superb Catalyst in Dehydrogenation of Dimethylamine Borane,” CHEMISTRYSELECT, pp. 5751–5759, 2017, Accessed: 00, 2020. [Online]. Available: