Biologically Functional Ultrathin Films Made of Zwitterionic Block Copolymer Micelles

2019-02-05
We report the preparation of ultrathin coatings of zwitterionic block copolymer micelles and a comparison of their protein adsorption, adhesiveness, and antibacterial properties. Zwitterionic block copolymer micelles were obtained through pH-induced self-assembly of poly[3-dimethyl(methacryloyloxyethyl)-ammonium propanesulfonate-b-2-(diisopropylamino)ethyl methacrylate] (beta PDMA-b-PDPA) at pH 7.5. beta PDMA-b-PDPA micelles with zwitterionic beta PDMA-corona and pH-responsive PDPA-core were then used as building blocks to prepare layer-by-layer (LbL) assembled multilayer films together with hyaluronic acid (HA), tannic acid (TA), or poly(sodium 4-styrenesulfonate) (PSS). Protein adsorption tests showed that 3-layer beta PDMA-b-PDPA micelles/HA films were the most effective to reduce the adhesion of BSA, lysozyme, ferritin, and casein. In contrast, beta PDMA-b-PDPA micelles/TA films were the most attractive surfaces for protein adsorption. Bacterial antiadhesive tests against a model Gram-negative bacterium, Escherichia coli, and a model Gram-positive bacterium, Staphylococcus aureus, were in good agreement with the protein adsorption properties of the films. The differences in the antiadhesive properties between these three different film systems are discussed within the context of chemical nature- and the functional chemical groups of the polyanions, layer number, and surface morphology of the films. Multilayers were found to lose their antiadhesiveness in the long term. However, by taking advantage of the pH-responsive hydrophobic micellar cores, we show that an antibacterial agent could be loaded into the micelles and multilayers could exhibit antibacterial activity in the long term especially at moderately acidic conditions. In contrast to antiadhesive properties, no significant differences were recorded in the antibacterial properties between the different film types.

Suggestions

Amphoteric surface hydrogels derived from hydrogen-bonded multilayers: Reversible loading of dyes and macromolecules
Kharlampieva, Eugenia; Erel Göktepe, İrem; Sukhishvili, Svetlana A. (American Chemical Society (ACS), 2007-01-02)
We used hydrogen-bonded multilayers of poly(N-vinylpyrrolidone) (PVPON) and poly(methacrylic acid) (PMAA) as precursors for producing surface-bound hydrogels and studied their pH-dependent swelling and protein uptake behavior using in situ attenuated total reflection Fourier transform infrared spectroscopy and in situ ellipsometry. The hydrogels were produced by selective chemical cross-linking between PMAA units using carbodiimide chemistry and ethylenediamine (EDA) as a cross-linking reagent, followed by ...
Active Janus Particles at Interfaces of Liquid Crystals
Mangal, Rahul; Nayani, Karthik; Kim, Young-Ki; Büküşoğlu, Emre; Cordova-Figueroa, Ubaldo M.; Abbott, Nicholas. L. (American Chemical Society (ACS), 2017-10-17)
We report an investigation of the active motion of silica palladium Janus particles (JPs) adsorbed at interfaces formed between nematic liquid crystals (LCs) and aqueous phases containing hydrogen peroxide (H2O2). In comparison to isotropic oil aqueous interfaces, we observe the elasticity and anisotropic viscosity of the nematic phase to change qualitatively the active motion of the JPs at the LC interfaces. Although contact line pinning on the surface of the JPs is observed. to restrict out-of-plane rotat...
Design Parameters and Principles of Liquid-Crystal-Templated Synthesis of Polymeric Materials via Photolithography
AKDENİZ, BURAK; Büküşoğlu, Emre (American Chemical Society (ACS), 2019-10-08)
The design parameters and principles for the synthesis of polymeric microscopic objects using a method that combines photolithography and liquid crystal (LC) molecular templates have been demonstrated. Specifically, mixtures of a reactive mesogen (RM257) and nonreactive LC (E7) were polymerized using UV light and a photomask. We used photomasks with circular, triangular, rectangular, square, star-shaped, and heart-shaped features to provide initial shapes to the objects. Then, the unreacted parts were extra...
Dust Effects on Nucleation Kinetics and Nanoparticle Product Size Distributions: Illustrative Case Study of a Prototype Ir(0)(n) Transition-Metal Nanoparticle Formation System
Özkar, Saim (American Chemical Society (ACS), 2017-07-04)
The question is addressed if dust is kinetically important in the nucleation and growth of Ir(0) nanoparticles formed from [Bu4N](5)Na-3(1,5-COD)(IrP2W15Nb3O62)-P-I center dot (hereafter [(COD)Ir center dot POM](8-)), reduced by H-2 in propylene carbonate solvent. Following a concise review of the (often neglected) literature addressing dust in nucleation phenomena dating back to the late 1800s, the nucleation and growth kinetics of the [(COD)Ir center dot POK8- precatalyst system are examined for the effec...
Robust Covalent Coupling Scheme for the Development of FRET Aptasensor based on Amino-Silane-Modified Graphene Oxide
Kahyaoğlu, Leyla Nesrin (American Chemical Society (ACS), 2018-12-04)
In recent years, numerous aptamers have been physisorbed on graphene oxide (GO) to develop fluorescence resonance energy transfer-based aptasensors using the fluorescence quenching property of GO. However, physisorbed aptasensors show poor signal reversibility and reproducibility as well as nonspecific probe displacement, and thereby are not suitable for many analytical applications. To overcome these problems when working with complex biological samples, we developed a facile and robust covalent surface fu...
Citation Formats
S. Ulusan, S. Banerjee, and İ. Erel Göktepe, “Biologically Functional Ultrathin Films Made of Zwitterionic Block Copolymer Micelles,” LANGMUIR, pp. 1156–1171, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43044.