Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new time-domain deconvolution algorithm and its applications
Date
1999-03-19
Author
Tuncer, Temel Engin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
61
views
0
downloads
Cite This
Recently a new time-domain method has been presented for deconvolution [1]. This multidimensional method completely eliminates the problems of the previous methods in one dimension and covers a reasonable part of the solutions in multidimensions. In this paper, we present some of the properties of this method. We will especially focus on the frequency domain behaviour of the algorithm as well as the performance under numerical errors and errors due to noise. In addition we will present examples of the applications including blind deconvolution with a modified NAS-RIF algorithm.
Subject Keywords
Signals
URI
https://hdl.handle.net/11511/43157
DOI
https://doi.org/10.1109/icassp.1999.756251
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Deconvolution and preequalization with best delay LS inverse filters
Tuncer, Temel Engin (Elsevier BV, 2004-11-01)
A new method for finding the best delay for the design of least-squares (1,S) inverse filters is introduced. It is shown that there is a considerable difference between the LS errors of a best delay filter and an arbitrary LS inverse filter. Proposed method is an effective and computationally efficient approach for the design of LS optimum filters. Deconvolution problem is considered and the MSE performances of pseudoinverse, preequalization and LS inverse filtering are investigated. In this respect, the th...
A unified framework for derivation and implementation of Savitzky-Golay filters
Candan, Çağatay (Elsevier BV, 2014-11-01)
The Savitzky-Golay (SG) filter design problem is posed as the minimum norm solution of an underdetermined equation system. A unified SG filter design framework encompassing several important applications such as smoothing, differentiation, integration and fractional delay is developed. In addition to the generality and flexibility of the framework, an efficient SG filter implementation structure, naturally emerging from the framework, is proposed. The structure is shown to reduce the number of multipliers i...
An algebraic method for designing controllers for multi-input multi-output linear systems via s-domain input-output decoupling
Özgören, Mustafa Kemal (2009-03-01)
The method introduced here is applicable for multi-input multi-output, linear, and time-invariant systems. The state and output equations of the system, which are originally expressed in the t-domain, are first transformed into the s-domain. Then, input-output decoupling is achieved by generating the actual control variables as combinations of virtual control variables in such a way that each output is controlled by only the dedicated one of the virtual control variables. As the next stage, appropriate line...
Design and Analysis of Frequency-Tunable Amplifiers using Varactor Diode Topologies
Nesimoglu, Tayfun (Springer Science and Business Media LLC, 2011-08-01)
The design of frequency-tunable amplifiers is investigated and the trade-off between linearity, efficiency and tunability is revealed. Several tunable amplifiers using various varactor diode topologies as tunable devices are designed by using load-pull techniques and their performances are compared. The amplifier using anti-series distortion-free varactor stack topology achieves 38% power added efficiency and it may be tuned from 1.74 to 2.36 GHz (about 35% tunable range). The amplifier using anti-series/an...
New initialization methods for discrete coefficient FIR filter design with coefficient scaling and the use of scale factor in the design process
Çiloğlu, Tolga (Institute of Electrical and Electronics Engineers (IEEE), 2006-02-01)
The initialization of filter coefficients in discrete-coefficient finite-impulse-response (FIR) filter design (with coefficient scaling) using coefficient-value-assignment-based optimization techniques is considered. A common weakness of existing initialization measures, a total-square-error (TSE) measure and a maximum-error (ME) measure, is described. New TSE and ME measures that overcome the weakness are introduced. As opposed to the current knowledge, it is revealed that TSE and ME measures do not necess...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. E. Tuncer, “A new time-domain deconvolution algorithm and its applications,” 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43157.