Load and PV Generation Forecast Based Cost Optimization for Nanogrids with PV and Battery

2018-09-07
Gudelek, M. Ugur
Cirak, Cem R.
ARIN, Efe
SEZGİN, MUSTAFA ERDEM
Ozbayoglu, A. Murat
Göl, Murat
Power system resiliency and robustness became major concerns of the system operators and researchers after the introduction of the smart grid concept. The improvements in the battery storage systems (BSS) and the photovoltaic (PV) systems encourage power systems operators to enable the use of those systems in resiliency and robustness studies. Utilization of those systems not only contributes to the robustness of the power systems but also decrease the operational costs. There are several methods in literature to operate the grid systems with partitions of PV and BSS in the most economical way. Although these methods are straightforward and work fine, they can not guarantee the most economical result on a daily basis. In this paper, deep learning based PV generation and load forecasts are used to improve the results of optimization in terms of economic aspects in nano-grid applications. In the considered system, there are loads, PV generation units, BSS and grid connection. Bi-directional power flow is permitted between the main grid and the nano-grid system. The forecasting methodologies and used optimization algorithms will be explained in this paper.

Suggestions

Electricity Consumption Behaviors and Clustering of Distribution Grids in Terms of Demand Response
Cetinkaya, Umit; Avcı, Ezgi; BAYINDIR, RAMAZAN (2022-01-01)
Knowing of energy consumption behaviors and similarities between consumers becomes extremely important for electric power systems operators to apply green energy trends by ensuring the stability and flexibility of the grid. Especially in the modern power systems and the energy markets, consumer-based market structures must be implemented. Consumer types, energy needs, and demand behaviors of the distribution grid can affect cumulatively the demand behavior of the full electricity system. Thus, understanding...
Solar Power Generation Analysis and Forecasting Real-World Data Using LSTM and Autoregressive CNN
tosun, nail; sert, egemen; Ayaz, Enes; YILMAZ, ekin; GÖL, MURAT (2020-09-22)
Generated power of a solar panel is volatile and susceptible to environmental conditions. In this study, we have analyzed variables affecting the generated power of a 17.5 kW real-world solar power plant with respect to five independent variables over the generated power: irradiance, time of measurement, panel's temperature, ambient temperature and cloudiness of the weather at the time of measurement. After our analysis, we have trained three different models to predict intra-day solar power forecasts of th...
Data-driven modeling using deep neural networks for power systems demand and locational marginal price forecasting
Jimu, Honest; Fahrioğlu, Murat; Electrical and Electronics Engineering (2022-9)
Forecasting electricity demand and locational marginal prices (LMPs) have become critical components for power system security and management. Electricity Demand Forecasting (EDF) aids the utility in maximizing the use of power-generation plants and scheduling them for both reliability and cost-effectiveness. In this thesis, a novel Deep Neural Network Long Short-Term Memory (DNN-LSTM) forecasting model is suggested to improve accuracy and robustness for predicting hourly day ahead power system load and LMP...
Grid impedance estimation based adaptive controller design for back-to-back wind turbine power converters for stable operation in distorted and weak grid
Temiz, Hakan; Keysan, Ozan; Department of Electrical and Electronics Engineering (2019)
This thesis involves grid impedance estimation based adaptive controller design for back-to-back wind turbine power converters for stable operation in distorted and weak grid. The study focuses on the low frequency harmonic elimination of injected current to the grid under distorted grid conditions and maintaining system stability under wide range of grid impedance values for Voltage Source Inverters (VSIs) connected to the grid via LCL filter. To eliminate 5th and 7th harmonics of the injected current, a c...
Centralized Microgrid Control System in Compliance with IEEE 2030.7 Standard Based on an Advanced Field Unit
Pouraltafi-kheljan, Soheil; Ugur, Mesut; Bozulu, Efecan; Caliskan, Bahadir Can; Keysan, Ozan; Göl, Murat (2021-11-01)
The necessity for the utilization of microgrids emerges from the integration of distributed energy resources, electric vehicles, and battery storage systems into the conventional grid structure. In order to achieve a proper operation of the microgrid, the presence of a microgrid control system is crucial. The IEEE 2030.7 standard defines the microgrid control system as a key element of the microgrid that regulates every aspect of it at the point-of-interconnection with the distribution system, and autonomou...
Citation Formats
M. U. Gudelek, C. R. Cirak, E. ARIN, M. E. SEZGİN, A. M. Ozbayoglu, and M. Göl, “Load and PV Generation Forecast Based Cost Optimization for Nanogrids with PV and Battery,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43230.