Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Li-Yorke chaos in the system with impacts
Date
2009-03-15
Author
Akhmet, Marat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
49
views
0
downloads
Cite This
The analogue of Li-Yorke chaos [T.Y. Li, J. Yorke, Period three implies chaos, Amer. Math. Monthly 87 (1975) 985-992] for a special initial value problem of a non-autonomous impulsive differential equation is developed.
Subject Keywords
Applied Mathematics
,
Analysis
URI
https://hdl.handle.net/11511/43279
Journal
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
DOI
https://doi.org/10.1016/j.jmaa.2008.11.015
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Matrix measure approach to Lyapunov-type inequalities for linear Hamiltonian systems with impulse effect
Kayar, Zeynep; Zafer, Ağacık (Elsevier BV, 2016-08-01)
We present new Lyapunov-type inequalities for Hamiltonian systems, consisting of 2n-first-order linear impulsive differential equations, by making use of matrix measure approach. The matrix measure estimates of fundamental matrices of linear impulsive systems are crucial in obtaining sharp inequalities. To illustrate usefulness of the inequalities we have derived new disconjugacy criteria for Hamiltonian systems under impulse effect and obtained new lower bound estimates for eigenvalues of impulsive eigenva...
Operator Hilbert Systems
Dosi, A. (Pleiades Publishing Ltd, 2019-04-01)
The present note deals with operator Hilbert systems, which are quantizations of unital cones in Hilbert spaces. One central result of the note is that the Pisier operator Hilbert space is an operator system whose quantum cone of positive elements is described in terms of the quantum ball of the relevant conjugate Hilbert space. Finally, we obtain a solution to the problem of Paulsen, Todorov and Tomforde on separable morphisms between operator systems and characterize minmax- completely positive maps betwe...
Integral criteria for oscillation of third order nonlinear differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydın; Zafer, Ağacık (Elsevier BV, 2009-12-15)
In this paper we are concerned with the oscillation of third order nonlinear differential equations of the form
A representation theorem for quantum systems
Dosi, Anar (Springer Science and Business Media LLC, 2013-07-01)
In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum L-a-system up to a quantum order isomorphism.
On Stability of Linear Delay Differential Equations under Perron's Condition
Diblík, J.; Zafer, A. (Hindawi Limited, 2011)
The stability of the zero solution of a system of first-order linear functional differential equations with nonconstant delay is considered. Sufficient conditions for stability, uniform stability, asymptotic stability, and uniform asymptotic stability are established.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Akhmet, “Li-Yorke chaos in the system with impacts,”
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
, pp. 804–810, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43279.