Chemical Composition of Submicrometer Particulate Matter (PM1) Emitted from Combustion of Coals of Various Ranks in O-2/N-2 and O-2/CO2 Environments

2013-08-01
Kazanç Özerinç, Feyza
Maffei, Tiziano
A laboratory-scale investigation has been conducted on the physical and chemical characteristics of particulate matter emissions (ashes) from pulverized coals burning in the air or in simulated oxy-fuel environments. Oxy-fuel combustion is a process that takes place in O-2/CO2 gases, using an air separation unit (ASU) to supply the oxygen and a flue-gas recirculation (FGR) stream to supply the carbon dioxide to the boiler. In order to investigate the effects of the background gas on the particulate matter generated by the combustion of coals of different ranks, a bituminous, a sub-bituminous, and a lignite coal were burned in an electrically heated laminar-flow drop-tube furnace (DTF) in both O-2/N-2 and O-2/CO2 environments (21% < O-2 < 6096). A recent publication by the authors reports on the physical characteristics of the particulate matter; hence, this work focuses on the chemical composition, specifically targeting the difficult-to-capture submicrometer size (PM1) ashes. Particulate matter was collected by a low-pressure multistage cascade impactor and was analyzed for chemical composition by Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDS). Selected samples were also examined by Electron Microprobe Analysis (EMA). Results showed that submicrometer (PM1) ashes of the bituminous, the sub-bituminous, and the lignite coals contained mostly Si, Al, Fe, Mg, Ca, K, Na, and S. Prominent components of large submicrometer particle (PM0.56-1) compositions were Si and Al (Ca in sub-bituminous), whereas small submicrometer particles (PM0.1-0.18) were markedly enriched in S. The mass yields of elemental species found in the submicrometer-size particles from all three coals were lower when combustion occurred in CO2, instead of N-2 background gases. The chemical composition of the PM0.56-1 subcategory was not affected by the background gas. To the contrary, the composition of the PM0.1-0.18 subcategory was affected by replacing N-2 with CO2, and mass fractions of Si, Ca, and Al decreased whereas Na, K, and S increased. Furthermore, in PM0.1-0.18, when the O-2 mole fraction increased in either N-2 or CO2, the mass fractions of Si, Ca, and Al increased at the expense mostly of Na, K, and S, but also Fe in the case of the sub-bituminous coal. Experimentally derived partial pressures of the volatile suboxide SiO (P-SiO) at the char surface were compared with the predictions of an ash vaporization model without and with coupling with a particle combustion model; they were found to be in the range of the model predictions.
ENERGY & FUELS

Suggestions

Rheological and thermal analysis of bentonites for water base drilling fluids
Kök, Mustafa Verşan (Informa UK Limited, 2004-02-01)
The objective of this research is to investigate the rheological and thermal properties of bentonites for water base drilling fluids. Rheological experiments were performed with 4 different bentonite samples and clay percentages, cation-exchange capacity (CEC), swelling volume, pH, and physical and rheological properties of the samples are determined. The thermal behaviors of bentonite samples were investigated using simultaneous thermogravimetry (TG/DTG) and differential thermal analysis (DTA) techniques. ...
Characterization of Particulate Matter Emitted from Combustion of Various Biomasses in O-2/N-2 and O-2/CO2 Environments
Ruscio, Amanda; Kazanç Özerinç, Feyza; Levendis, Yiannis A. (American Chemical Society (ACS), 2014-01-01)
This work reports on the physical and chemical characteristics of the ashes of biomass residues burned in air as well as in simulated dry oxy-combustion conditions. Three pulverized biomass residues (olive residue, corn residue, and torrefied pine sawdust) were burned in a laboratory-scale laminar-flow drop tube furnace heated to 1400 K. Olive residue resulted in by far the largest particulate yields both submicrometer (PM1) and supermicrometer (PM1-18)-whereas torrefied pine sawdust resulted in the lowest....
Influence of coal briquette size on the combustion kinetics
Altun, Naci Emre; Bagci, AS (Elsevier BV, 2004-08-15)
In this study, the effects of one of the most important parameters in coal briquetting process, the briquette size, on the combustion behaviour of coal briquettes were determined from the view of combustion kinetics, i.e. their liability to ignite and combust. Effect of size on the combustion kinetics was treated by two different approaches. The first one consists of combustion kinetics experiments with briquettes of increasing sizes, thus of expanding volumes. In the second phase, briquette dimensions were...
Analytical investigation of wet combustion process for heavy oil recovery
Bağcı, Ali Suat (Informa UK Limited, 2004-12-01)
Analysis of combustion tube data produced from experiments performed under realistic reservoir conditions is currently the most valid method of investigating in-situ combustion process. In this study, the optimization of water-air ratio for B. Kozluca heavy crude oil, and the comparison of the performance of dry and wet forward combustion processes were studied. An analytical model was used to extend the laboratory results so that the oil production and steam zone volume can be estimated under field conditi...
Comparison of single particle combustion behaviours of raw and torrefied biomass with Turkish lignites
Magalhaes, Duarte; Panahi, Aidin; Kazanç Özerinç, Feyza; Levendis, Yiannis A. (Elsevier BV, 2019-04-01)
This study investigated the combustion behaviour of single pulverized biomass and lignite coal particles under high temperature-high heating rate conditions. Selected fuels included three important agricultural residues in Turkey (olive residue, almond shell, and hazelnut shell), and two lignite coals from the regions of Tuncbilek and Soma in Turkey. Biomass fuels were either raw or torrefied at 275 degrees C for 30 min in nitrogen. The biomass fuels were sieved to a size cut of 212-300 mu m, and the coals ...
Citation Formats
F. Kazanç Özerinç and T. Maffei, “Chemical Composition of Submicrometer Particulate Matter (PM1) Emitted from Combustion of Coals of Various Ranks in O-2/N-2 and O-2/CO2 Environments,” ENERGY & FUELS, pp. 4984–4998, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43338.