Fine-tuning snowflake fractal antennas

2017-11-01
Karaosmanoglu, Bariscan
Kucuk, Semih
Ergül, Özgür Salih
We present a simple yet effective approach for fine-tuning operating frequencies of snowflake fractal antennas. Given a basic design, a set of numerical simulations involving alternative corner angles are carried out to compute their isolated effects on frequency bands. Then, the effects of consecutive modifications are estimated and used to identify possible combinations for shifting the frequencies in the desired ranges. The effects of corner angles are almost independent of each other, leading to accurate estimations that allow for easy tuning of these antennas without time-consuming optimizations.
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS

Suggestions

Three Dimensional Microfabricated Broadband Patch and Multifunction Reconfigurable Antennae for 60 GHz Applications
Hunerli, H. V.; Mopidevi, H.; Cagatay, E.; Imbert, M.; Romeu, J.; Jofre, L.; Cetiner, B. A.; BIYIKLI, NECMİ (2015-05-17)
In this paper we present two antenna designs capable of covering the IEEE 802.11ad (WiGig) frequency band (57-66 GHz and 59-66 GHz respectively). The work below reports the design, microfabrication and characterization of a broadband patch antenna along with the design and microfabrication of multifunction reconfigurable antenna (MRA) in its static form excluding active switching. The first design is a patch antenna where the energy is coupled with a conductor-backed (CB) coplanar waveguide (CPW)-fed loop s...
A Wideband Fractal Antenna and Comparison of RF Rectifiers for Electromagnetic Energy Harvesting
Ozdemir, Huriye; Nesimoglu, Tayfun (2017-11-30)
This paper presents a wideband fractal antenna and compares two efficient rectifier topologies suitable for 2.45 GHz band. The combined fractal antenna and the rectifiers may be used for ambient RF energy harvesting from wireless LAN/Wi-Ei. The proposed fractal antenna covers the most frequently encountered frequency bands which are located around 1800 MHz, 2.1 GHz, 2.4 GHz and 2.45 GHz corresponding to standards like GSM/DCS, UMTS, ISM and WLAN respectively. The return loss of the proposed antenna is below...
Design and analysis of ultra-wideband (UWB) printed monopole antennas of circular shape
Karadağ, Serkan; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2017)
This study proposes three microstrip line fed circular monopole antennas with ultra-wideband (UWB) characteristics, improved omnidirectional radiation pattern and WLAN (5 GHz-6 GHz) band notched characteristics for wireless and mobile communication systems. In this thesis, first, a microstrip line fed ultra-wideband ring monopole antenna with improved omnidirectional radiation pattern is designed, fabricated and measured. Two corners are tapered on the ground plane for increasing impedance bandwidth. In ord...
The effects of mutual coupling between antenna elements of the performance adaptive arrays
Özkaya, Güney; Alatan, Lale; Department of Electrical and Electronics Engineering (2003)
Array processing involves manipulation of signals induced on various antenna elements. In an adaptive array system, the radiation pattern is formed according to the signal environment by using signal processing techniques. Adaptive arrays improve the capacity of mobile communication systems by placing nulls in the direction of interfering sources and by directing independent beams toward various users. Adaptive beamforming algorithms process signals induced on each array element that are assumed not to be a...
Electromagnetic Scattering from Obstacles in the Near Field Region of Electrically Large Arrays
Cetin, Ramazan; Aydın Çivi, Hatice Özlem; Nepa, Paolo; Manara, Giuliano (2009-09-18)
In this paper, an efficient method for the analysis of electromagnetic scattering/radiation from the obstacles nearby electrically large array antennas, with nonuniform excitation, is proposed. The approach is based on the combination of a ray field representation of electrically large arrays and a DFT (Discrete Fourier Transform) based representation of array current distribution. Proposed method is applied to a 2D problem: Radiation of a linear array of 2N+1 infinitely long current elements with tapered c...
Citation Formats
B. Karaosmanoglu, S. Kucuk, and Ö. S. Ergül, “Fine-tuning snowflake fractal antennas,” INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43427.