Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
High resolution imaging and image analysis in porous media
Download
index.pdf
Date
2019
Author
Yalçın, Özge Hande
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
8
downloads
Flow and mass transfer in porous media are intimately coupled to their microstructure. Advances in computational capabilities have brought about the possibility of modeling these materials by employing the high-resolution 3D topography in flow and mass transfer simulations. This work investigates and analyzes the microstructure and adsorbate localization behavior of porous media. Specifically, high- resolution microscopy techniques were implemented to obtain morphology information for porous media. Gigacap Q-650M and HALOTM were chosen as adsorbents and α-lactalbumin was used as staining protein. Microstructures of Gigacap Q-650M and HALOTM were imaged by using Scanning Electron Microscopy (SEM). The crosslinking structure of Gigacap Q-650M was observed, and the core-shell structure of HALOTM particle was also investigated by using SEM. Gigacap Q-650M with and without adsorbed protein were characterized by Transmission Electron Microscopy (TEM). Contrast in the protein-loaded adsorbent was much better than the sample without adsorbed protein. In TEM images, protein localization on the adsorbent was investigated. It can be surmised that the protein on Gigacap Q-650M remains confined to polymethyl methacrylate (PMMA) base and aldehyde fixation itself results in extensive cross-linking of proteins (and presumably functional groups), thus potentially resulting in the contiguous solid-phase observed. Characterizations of Gigacap Q-650M and HALOTM were also done by using Focus Ion Beam (FIB). HALOTM particle structure composed of core and the shell part was investigated and 2-D images of HALOTM were used to construct 3-D topography of it by using FIB whereas FIB images of Gigacap Q-650M could not be used to form 3-D structure because of the low resolution of images.
Subject Keywords
Porous materials.
,
Keywords: Imaging techniques
,
Ion exchange chromatography
,
Protein adsorption
,
Core-shell particles
,
Polymer modified stationary phase.
URI
http://etd.lib.metu.edu.tr/upload/12624149/index.pdf
https://hdl.handle.net/11511/44297
Collections
Graduate School of Natural and Applied Sciences, Thesis