Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
D and 3D finite element analyses of dynamic delamination in curved CFRP laminates
Download
index.pdf
Date
2019
Author
Ata, Tamer Tahir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
286
views
114
downloads
Cite This
Most of the aerospace structures such as spars and ribs contain curved regions in which presence of curved region induces significant tensile stresses in the radial direction in these complex parts. Since composite materials inherently have low mechanical properties in the transverse direction, transverse tensile stresses developed in curved region cause delamination which reduces load carrying capacity of the component and even leads to collapse of the part. In this study, progressive interlaminar damage in curved CFRP composite laminates with two different ply architectures (unidirectional and fabric) are investigated by using ABAQUS/Explicit in conjunction with cohesive zone elements. The simulations are based on the experiments conducted by Tasdemir [ 1 ]. 2D and 3D finite element analyses of the considered two specimens (UD and fabric) are performed under moment/axial combined loading. In both 2D and 3D analyses, delamination is found to induce at the center of the curved region which is exactly the maximum radial stress location. 2D and 3D finite element analyses of dynamic delamination in curved composite laminates revealed that the crack propagation speeds inside the laminate varies as edge crack travels faster than center crack. For UD laminate, delamination initiates at the center of the width of the laminate and as the crack passes to arm region it travels in Mode-II dominancy at intersonic speeds. For fabric laminate, delamination initiates at the center of the width of the laminate. It is interesting to observe the delamination onset at center of the width instead of free-edge where the material mismatch exists between different layer orientations. 3D analysis is found to capture effects that are not seen in the 2D analysis. The analysis agrees well with the experimental results in terms of damage initiation location through the thickness direction and load-displacement trend. To the author’s knowledge, this is the first study to model the dynamic delamination in curved CFRP laminates using 3D simulations.
Subject Keywords
Composite materials
,
Composite materials Delamination.
,
Keywords: Delamination
,
Cohesive Zone Method
,
Dynamic Fracture
,
Curved Composites.
URI
http://etd.lib.metu.edu.tr/upload/12624581/index.pdf
https://hdl.handle.net/11511/44625
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Experimental Observations of Dynamic Delamination in Curved [0] and [0/90] Composite Laminates
Uyar, Imren; Arca, Miray; Gozluklu, Burak; Çöker, Demirkan (null, Springer, 2015-01-01)
Curved composite parts are increasingly replacing metal ribs and box structures in recent civil aerospace structures and wind turbine blades. Delamination of L-shaped composite laminates occurs by interlaminar opening stresses in addition to the interlaminar shear stresses at the curved region. An experimental setup is designed to investigate dynamic delamination in L-shaped composite brackets under quasi static shear loading. The materials are unidirectional [0]17and cross-ply [0/90]17 epoxy/graphite compo...
Experimental Observations of Dynamic Delamination in Curved [0] and [0/90] Composite Laminates
Uyar, İmren; Arca, Miray; Gozluklu, Burak; Çöker, Demirkan (2015-01-01)
Curved composite parts are increasingly replacing metal ribs and box structures in recent civil aerospace structures and wind turbine blades. Delamination of L-shaped composite laminates occurs by interlaminar opening stresses in addition to the interlaminar shear stresses at the curved region. An experimental setup is designed to investigate dynamic delamination in L-shaped composite brackets under quasi static shear loading. The materials are unidirectional [0]17and cross-ply [0/90]17 epoxy/graphite compo...
INVESTIGATION OF INTERSONIC FRACTURE IN HIGLY CURVED COMPOSITE LAMINATES UNDER QUASI-STATIC LOADING
Gozluklu, B.; Uyar, I; Çöker, Demirkan (2014-07-25)
In wind energy and aerospace industries, new advances in composite manufacturing technology enable to produce primary load carrying elements as composite materials in wide variety of shapes large such as an L-shape. However, due to the geometry, Interlaminar Normal Stresses (ILNS) are induced once a moderately thick laminate takes highly curved shape. In the curved part of the L-shaped structure, the development of ILNS promotes mode-I type of delamination propagation which is the weakest fracture mode. Thi...
Numerical investigation of delamination in L-shaped cross-ply composite bracket
Gümüş, M.; Gözlüklü, B.; Çöker, Demirkan (null; 2014-01-01)
Interlaminar normal stresses are induced with interlaminar shear stresses leading to mixed-mode delamination (MMD) in curved cross-ply composite laminates. Dynamic mixed-mode delamination is studied using explicit finite element method and Cohesive Zone Modelling Dynamic response of the specimen is compared with the experiments.
Numerical modeling of failure in composite L-beam and T-joint structures
Temiz, Pakize; Çöker, Demirkan; Department of Aerospace Engineering (2022-12-02)
Laminated curved-shape composite structures which are used as stiffening components in aerospace, wind, automotive and marine industries are subjected to high radial and tangential stresses. For the scope of this thesis, different modelling strategies are investigated to simulate interlaminar and intralaminar failure in composite L-beam and T-joint structures using commercial finite element (FE) code ABAQUS/Standard 2020. In the first part, [030] and [03/903/03/903/03]s laminated L-beams are evaluated using...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. T. Ata, “D and 3D finite element analyses of dynamic delamination in curved CFRP laminates,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Aerospace Engineering., Middle East Technical University, 2019.