Obstacle avoidance control for a human-operated mobile robot

Download
2019
Mohamadi Nazarabad, Yaser
In this study, the collaboration between human operator and a wheeled mobile robot in obstacle avoidance scenario is addressed. The tele-operation task is completed by integrating a force-feedback joystick to the human-robot system. The force-feedback joystick is able to apply forces on human operator and establish a bi-directional communication interface between the operator and the robot. Depending on levels of autonomy assigned to the robot, the operator and the robot are assigned with different roles during the navigation to a desired position in an unknown environment. A behavior-based control structure is used to formulate different cooperative control schemes by which the data provided by both the operator and the robot sensory channels are used to generate the optimal control inputs, resulting a safe travel to the goal with a minimum possible number of collisions and in the shortest possible time. The results of the study reveal that compared with manual and autonomous drive modes, cooperative control schemes make significant improvements in the overall performance of the system.

Suggestions

Behavior-Based Approach for Cooperative Control of a Haptic-driven Mobile Robot
Mohamadi, Yaser; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (2019-01-01)
This paper addresses the obstacle avoidance performance of a tele-operated wheeled mobile robot. The robot is equipped with both a camera and a laser range sensor to acquire the necessary data from the surrounding. The communication between the operator and the robot is established by means of a force-feedback haptic joystick. In order to tackle go-to-goal and obstacle avoidance tasks, behavior-based control methodology has been used. The results of the study show that the proposed cooperative control appro...
Human aware navigation of a mobile robot in crowded dynamic environments
Hacınecipoğlu, Akif; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2019)
As mobile robots start operating in dynamic environments crowded with humans, human-aware and human-like navigation is required to make these robots navigate safely, efficiently and in socially compliant manner. People can navigate in an interactive and cooperative fashion so that, they are able to find their path to a destination even if there is no clear path leading to it. This is clearly a dexterity of humans. But the mobile robots which have to navigate in such environments lack this feature. Even perf...
The learning and use of traversability affordance using range images on a mobile robot
Ugur, Emre; Dogar, Mehmet R.; Cakmak, Maya; Şahin, Erol (2007-04-14)
We are interested in how the concept of affordances can affect our view to autonomous robot control, and how the results obtained from autonomous robotics can be reflected back upon the discussion and studies on the concept of affordances. In this paper, we studied how a mobile robot, equipped with a 3D laser scanner, can learn to perceive the traversability affordance and use it to wander in a room filled with spheres, cylinders and boxes. The results showed that after learning, the robot can wander around...
Multiple human trajectory prediction and cooperative navigation modeling in crowded scenes
Hacinecipoglu, Akif; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (Springer Science and Business Media LLC, 2020-07-01)
As mobile robots start operating in environments crowded with humans, human-aware navigation is required to make these robots navigate safely, efficiently and in socially compliant manner. People navigate in an interactive and cooperative fashion so that, they are able to find their path to a destination even if there is no clear route leading to it. There are significant efforts to solve this problem for mobile robots; however, they are not scalable to high human density and learning based approaches depen...
Trajectory planning and tracking for autonomous vehicles
Çiçek, Haluk Levent; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2022-12-27)
Finding appropriate paths is an essential issue for the development of autonomous vehicles and robots. Hereby, it has to be considered that autonomous vehicles cannot follow sharp corners, as they cannot turn on a single point. Therefore, it is important to compute smooth paths that have additional desirable properties such as minimum length and sufficient distance from obstacles. Furthermore, practical applications require the computation of such paths in real time. This thesis develops a general method...
Citation Formats
Y. Mohamadi Nazarabad, “Obstacle avoidance control for a human-operated mobile robot,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2019.