Kinematic Calibration of PHANTOM Premium 1.516DOF Haptic Device

2011-01-01
Precise positioning and precise force control requirement in haptic devices necessitate the calibration of the device. Since force control algorithms in haptic interfaces employ Jacobian matrix that includes kinematic model parameters, calibration is not only important for pose accuracy but also for force control. The deviation in kinematic parameters and joint transmission errors are main reasons disturbing the calibration of the haptic devices. Capstan drives and parallelogram mechanisms are preferred to use for actuation in haptic device design. Their transmission errors should be estimated in the calibration. This paper presents a simulation study including the estimation of kinematic parameters and transmission errors due to the capstan drives and parallelogram mechanism for a PHANTOM Premium haptic device.
ADVANCED DESIGN AND MANUFACTURE IV

Suggestions

Kinematic calibration of a 7 DoF hapic device
Baser, Ozgur; Konukseven, Erhan İlhan (2011-12-28)
Precise positioning and precise force control requirement in haptic devices necessitate the kinematic calibration of the device. Since force control algorithms in haptic interfaces employ Jacobian matrix which includes kinematic model parameters, kinematic calibration is not only important for pose accuracy but also for force control. The deviation of kinematic parameters and joint transmission errors are main reasons disturbing the kinematic calibration of the manipulators. In haptic device design, capstan...
Kinematic model calibration of a 7-DOF capstan-driven haptic device for pose and force control accuracy improvement
Baser, Ozgur; Konukseven, Erhan İlhan (SAGE Publications, 2013-01-01)
The literature on kinematic calibration of industrial robots and haptic devices suggests that proper model calibration is indispensable for accurate pose estimation and precise force control. Despite the variety of studies in the literature, the effects of transmission errors on positioning accuracy or the enhancement of force control by kinematic calibration is not fully studied. In this article, an easy to implement kinematic calibration method is proposed for the systems having transmission errors. The p...
Transparency and stability performance improvement in haptic devices
Başer, Özgür; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2012)
Haptic devices are evaluated in terms of transparency, stability, pose and force control accuracy. Precise velocity and acceleration estimations are needed in haptic devices for accurate simulations. This thesis firstly focuses on velocity and acceleration estimations from incremental encoders and proposes two new estimation techniques. The second goal in the thesis is transparency improvement. The transparency is a metric that shows how well a virtual model is reflected to the user. Conventional force cont...
Control system design for a haptic device
Bideci, Süleyman; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2007)
In this thesis, development of a control system is aimed for a 1 DOF haptic device, namely Haptic Box. Besides, it is also constructed. Haptic devices are the manipulators that reflect the interaction forces with virtual or remote environments to its users. In order to reflect stiffness, damping and inertial forces on a haptic device position, velocity and acceleration measurements are required. The only motion sensor in the system is an incremental optical encoder attached to the back of the DC motor. The ...
Hybrid control algorithm to improve both stable impedance range and transparency in haptic devices
Baser, Ozgur; Gurocak, Hakan; Konukseven, Erhan İlhan (2013-02-01)
An ideal haptic device should transmit a wide range of stable impedances with maximum transparency. When using active actuators, transparency improvement algorithms tend to decrease the range of attainable impedances. Passive actuators can transmit high impedances stably, but are not sufficient alone for transparency. In this study, a hybrid force control algorithm employing active and passive actuators was developed to improve the stable impedance range and transparency in haptic devices. A new transparenc...
Citation Formats
O. Baser and E. İ. Konukseven, “Kinematic Calibration of PHANTOM Premium 1.516DOF Haptic Device,” ADVANCED DESIGN AND MANUFACTURE IV, pp. 205–208, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44806.