Fully autonomous piezoelectric energy harvesting interface circuit utilizing low profile nonlinear switching technique

2020
Çiftci, Berkay
Energy scavenging from ambient vibration sources via piezoelectric transducers offers a promising solution to power microelectronic devices. Energy extraction from harvesters is conducted with full-bridge rectifiers (FBRs) whose performances are affected harshly due to intrinsic capacitance of harvester requiring continuous charging. Conventional nonlinear switchingtechniques proposed in literature overcome problems associated with standard AC/DC converters. Nonetheless, they require large external components to achieve decentconversion efficiencies and output powers. This obstructs miniaturization trend inmicro-fabricated wireless sensor networksand limits their application area. The aim of this work is to implement a low-profile autonomous interface circuit that can harvest energy from MEMS piezoelectric transducers and deliver power to electronic loads. In the first design, a unique low-cost fully autonomous interface circuit using novel SSHCItechnique is proposed to reduce overall system volume. New two-step voltage flipping with optimalflipping time detection enables Synchronized Switch Harvesting on Capacitor-Inductor (SSHCI) circuit to use inductors in the range of tens of ȝH¶s forvoltage flipping. Thisshrinks system volume significantly. Fabricated IC is able to attain 6.14x output power improvement over ideal FBRs and 90.1% power n the first design, a unique low-cost fully autonomous interface circuit using novel SSHCItechnique is proposed to reduce overall system volume. New two-step voltage flipping with optimalflipping time detection enables Synchronized Switch Harvesting on Capacitor-Inductor (SSHCI) circuit to use inductors in the range of tens of ȝH¶s forvoltage flipping. Thisshrinks system volume significantly. Fabricated IC is able to attain 6.14x output power improvement over ideal FBRs and 90.1% power conversion efficiency.Secondly, maximum power point tracking (MPPT) circuit integrated with SSHCI is implementedto eliminate load dependency. Inductor sharing between SSHCI and MPPT allows them to employ the same low-prolife inductorfor operation which decreases system cost.Occasional refreshment of optimum battery voltage sensing makes system invulnerable to input excitation changes of PEH. SSHCI-MPPT achieves 5.44x power extraction improvement and 83% efficiency while providing load independency.

Suggestions

An adaptable interface circuit for low power MEMS piezoelectric energy harvesters with multi-stage energy extraction
Chamanian, Salar; Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Kulah, Haluk (IEEE; 2017-10-21)
This paper presents a self-powered interface circuit to extract energy from ambient vibrations for powering up microelectronic devices. The system uses a MEMS piezoelectric energy harvester to scavenge power in 5 μW to 400 μW range. Synchronous electric charge extraction (SECE) technique is utilized to transfer harvested energy to output storage with the help of a novel multi-stage energy extraction (MSEE) circuit. The circuit is optimized in 180nm HV CMOS technology to operate with minimum power losses at ...
An adaptive piezoelectric energy harvesting interface circuit with a novel peak detector
Chamanian, S.; Zorlu, O.; Külah, Haluk; Muhtaroglu, A. (2015-03-26)
This paper presents a fully self-powered interface circuit with a novel peak detector for piezoelectric energy harvesters (PEH). This circuit can be utilized to scavenge energy from low power environmental vibrations in 10s of mu W range. Synchronous switching technique is used to extract maximum available power where switching instants are detected independently from excitation changes of the PEH. The proposed peak detector senses voltages higher than power supply for a wide frequency range of input vibrat...
A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method
Zorlu, Ozge; Topal, Emre Tan; Külah, Haluk (2011-02-01)
This paper presents a new vibration-based electromagnetic energy harvester using a mechanical frequency up-conversion method for harvesting energy from external low-frequency vibrations within a range of 1-10 Hz. The structure consists of a magnet placed on a diaphragm, a polystyrene cantilever carrying a pick-up coil, and a mechanical barrier which converts low-frequency vibrations to a higher frequency, hence increasing the efficiency of the system. The tested structure proved to generate 88.6 mV and 544....
An Adaptable Interface Circuit With Multistage Energy Extraction for Low-Power Piezoelectric Energy Harvesting MEMS
Chamanian, Salar; Ulusan, Hasan; Koyuncuoglu, Aziz; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-03-01)
This paper presents a self-powered interface circuit to extract energy from ambient vibrations for powering up microelectronic devices. The circuit interfaces a piezoelectric energy harvesting micro electro-mechanical systems (MEMS) device to scavenge acoustic energy. Synchronous electric charge extraction (SECE) technique is deployed through the implementation of a novel multistage energy extraction (MSEE) circuit in 180 nm HV CMOS technology to harvest and store energy. The circuit is optimized to operate...
An Electromagnetic Micro Power Generator for Low-Frequency Environmental Vibrations Based on the Frequency Upconversion Technique
Sari, Ibrahim; Balkan, Raif Tuna; Külah, Haluk (2010-02-01)
This paper presents a microelectromechanical-system-based electromagnetic vibration-to-electrical power generator that can harvest energy from low-frequency external vibrations. The efficiency of vibration-based harvesters is proportional to excitation frequency, so the proposed generator is designed to convert low-frequency environmental vibrations to a higher frequency by employing the frequency upconversion (FupC) technique. It has been shown that the generator can effectively harvest energy from environ...
Citation Formats
B. Çiftci, “Fully autonomous piezoelectric energy harvesting interface circuit utilizing low profile nonlinear switching technique,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Electrical and Electronics Engineering., Middle East Technical University, 2020.