Capturing Physical Dispersion Using a Nonlinear Shallow Water Model

Kian, Rozita
Horrillo, Juan
Zaytsev, Andrey
Yalçıner, Ahmet Cevdet
Predicting the arrival time of natural hazards such as tsunamis is of very high importance to the coastal community. One of the most effective techniques to predict tsunami propagation and arrival time is the utilization of numerical solutions. Numerical approaches of Nonlinear Shallow Water Equations (NLSWEs) and nonlinear Boussinesq-Type Equations (BTEs) are two of the most common numerical techniques for tsunami modeling and evaluation. BTEs use implicit schemes to achieve more accurate results compromising computational time, while NLSWEs are sometimes preferred due to their computational efficiency. Nonetheless, the term accounting for physical dispersion is not inherited in NLSWEs, calling for their consideration and evaluation. In the present study, the tsunami numerical model NAMI DANCE, which utilizes NLSWEs, is applied to previously reported problems in the literature using different grid sizes to investigate dispersion effects. Following certain conditions for grid size, time step and water depth, the simulation results show a fairly good agreement with the available models showing the capability of NAMI DANCE to capture small physical dispersion. It is confirmed that the current model is an acceptable alternative for BTEs when small dispersion effects are considered.


Numerical Modeling of Long Waves from Atypical Sources: Atmospheric Disturbances and Volcanic Origin
Doğan Bingöl, Gözde Güney; Yalçıner, Ahmet Cevdet; Department of Civil Engineering (2022-6-30)
Earthquakes are the main cause mechanisms of tsunamis and large tsunamigenic earthquakes, especially in the subduction zones, occur on relatively much shorter timescales, but destructive tsunamis are also produced by volcanic eruptions, which have been threatening the coastal communities throughout history. Furthermore, while earthquake-generated tsunamis have been studied immensely, there is less focus on research related to tsunamis induced by atmospheric disturbances (meteotsunamis). Consequently, this s...
Evaluating and merging model- and satellite-based precipitation products over varying climate and topography
Amjad, Muhamma; Yılmaz, Mustafa Tuğrul; Department of Civil Engineering (2020)
Before using the satellite- and model-based precipitation retrievals in hydrological studies, their uncertainty assessment is crucial. Improving their performance accuracy is another important issue worth consideration. This study first evaluates and intercompares a set of nine precipitation products (2 satellite estimation-based, 2 model reanalysis-based, and 5 model forecast-based products) over varying climate and topography by using the in-situ observed precipitation data as truth. The products were the...
Rainfall-triggered landslides in an unsaturated soil: a laboratory flume study
Ahmadi-Adli, Mohammad; Huvaj Sarıhan, Nejan; Toker, Nabi Kartal (2017-11-01)
Extreme and/or prolonged rainfall events frequently cause landslides in many parts of the world. In this study, infiltration of rainfall into an unsaturated soil slope and triggering of landslides is studied through laboratory model (flume) tests, with the goal of obtaining the triggering rainfall intensity-duration (I-D) threshold. Flume tests with fine sand at two different relative densities (34 and 48%) and at slope angle of 56.5 degrees are prepared, and rainfall (intensity in the range of 18 to 64 mm/...
The impact of climate change on sea level rise at Peninsular Malaysia and Sabah-Sarawak
Ercan, Ali; Bin Mohamad, Mohd Fauzi; Kavvas, M. Levent (2013-01-01)
The sea level change along the Peninsular Malaysia and Sabah-Sarawak coastlines for the 21st century is investigated along the coastal areas of Peninsular Malaysia and Sabah-Sarawak because of the expected climate change during the 21st century. The spatial variation of the sea level change is estimated by assimilating the global mean sea level projections from the Atmosphere-Ocean coupled Global Climate Model/General Circulation Model (AOGCM) simulations to the satellite altimeter observations along the su...
Investigating time series shoreline changes by integration of remote sensing and geographical information systems
Fulat, İhsan Alper; Süzen, Mehmet Lütfi; Department of Geodetic and Geographical Information Technologies (2005)
Spatial analyses of shoreline recession and accretion, and future shoreline position predictions in coastal countries have considerable importance due to engineering, planning, management and environmental concerns. In spite of this importance, there are only a few studies in Turkey. The aim of this thesis are to determine the shoreline rate-of-change of Büyük Menderes Delta, by geographical information systems for the last fifty-year period, in order to approximate future shoreline position of Büyük Mender...
Citation Formats
R. Kian, J. Horrillo, A. Zaytsev, and A. C. Yalçıner, “Capturing Physical Dispersion Using a Nonlinear Shallow Water Model,” JOURNAL OF MARINE SCIENCE AND ENGINEERING, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: