Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Toward the control of a multi-jointed, monoped runner
Download
index.pdf
Date
1998-05-20
Author
Saranlı, Uluç
Koditschek, D.E.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
99
views
138
downloads
Cite This
We propose a new family of controllers for multi-jointed planar monoped runners, based on approximate but accurate models of the stance phase dynamics of a two degree of freedom "SLIP" leg. Unlike previous approaches, the new scheme gives control over all parameters of the system including the hopping height, forward speed and duty cycle. The control laws are "deadbeat" in nature, derived by computing the inverse of an approximate return map and corrected by integral compensation. We use the expressions obtained in this way to control the original SLIP leg as well as radically different, more realistic four degree of freedom legs. In each case, the performance of the deadbeat scheme in controlling forward running velocity is compared to a modified Raibert control strategy, whose experimental stability properties have been analyzed carefully in the low degree of freedom setting.
Subject Keywords
Leg
,
Humans
,
Velocity control
,
Nonlinear dynamical systems
,
Biological system modeling
,
Control systems
,
Stability analysis
,
Control system analysis
,
Nonlinear control systems
,
Animals
URI
https://hdl.handle.net/11511/46468
DOI
https://doi.org/10.1109/robot.1998.680750
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Comparison of position controllers designed for an elastic system using its complete and deficient dynamic models
Özgören, Mustafa Kemal (2010-01-01)
This article is concerned with comparing the position controllers designed for an elastic system using its complete and deficient dynamic models. The system considered here as an application example consists of three rotors connected with two elastic shafts. Three kinds of controller are designed and compared. Controller-3 is designed using the complete dynamic model of the system. Therefore, it works perfectly, satisfying all the specified requirements. Controller-2 is designed based on a deficient model t...
Optimal control of a half-circular compliant legged monopod
AYDIN, Yasemin Ozkan; Saranlı, Afşar; Yazıcıoğlu, Yiğit; Saranlı, Uluç; Leblebicioğlu, Mehmet Kemal (2014-12-01)
This paper investigates an optimal control strategy for the dynamic locomotion of a simplified planar compliant half-circular legged monopod model. We first present a novel planar leg model which incorporates rolling kinematics and a new compliance model, motivated by the use of similar leg designs on existing platforms. Two locomotion tasks, moving at a prescribed horizontal velocity and a one-shot jump to maximum possible height or length, are then investigated within this model. The designs of two high-l...
Adaptive decentralized control of interconnected systems
Sezer, ME; Altunel, H (2004-08-01)
This paper presents a decentralized adaptive stabilization scheme for a class of interconnected systems using high-gain adaptive controllers. The nominal subsystems are assumed to satisfy some mild conditions required by standard adaptive control schemes, and the interconnections certain structural conditions. The decentralized controllers are high-gain dynamic systems operating on local outputs to generate local control inputs. Both continuous-time and sampled-data controllers are considered. The idea behi...
Sliding mode control with optimal sliding surfaces for missile autopilot design
Salamci, MU; Özgören, Mustafa Kemal; Banks, SP (2000-07-01)
A new method is introduced to design sliding mode control with optimally selected sliding surfaces for a class of nonlinear systems. The nonlinear systems are recursively approximated as linear time-varying systems, and corresponding time-varying sliding surfaces are designed for each approximated system so that a given optimization criterion is minimized. The control input, which is designed by using an approximated system, is then applied to the nonlinear system. The method is used to design an autopilot ...
Adaptive output feedback control with reduced sensitivity to sensor noise
Kutay, Ali Türker; Hovakimyan, N (2003-01-01)
We address adaptive output feedback control of uncertain nonlinear systems with noisy output measurements, in which both the dynamics and the dimension of the regulated system may be unknown, and only the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. A recently developed method proposes the use of a linear error observer that estimates the tracking ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Saranlı and D. E. Koditschek, “Toward the control of a multi-jointed, monoped runner,” 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46468.