Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Chaotic period-doubling and OGY control for the forced Duffing equation
Date
2012-04-01
Author
Akhmet, Marat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
131
views
0
downloads
Cite This
In this paper we consider the Duffing equation forced with a pulse function, whose moments of discontinuity depend on the initial data. Existence of the chaos through period-doubling cascade is proved, and the OGY control method is used to stabilize the periodic solutions. Appropriate simulations of the chaos and stabilized periodic solutions are presented.
Subject Keywords
Duffing equation
,
Period-doubling cascade
,
OGY control method
,
Chaotic attractor
,
Lyapunov exponents
,
Pulse functions
URI
https://hdl.handle.net/11511/46776
Journal
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
DOI
https://doi.org/10.1016/j.cnsns.2011.09.016
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
DYNAMICAL SYNTHESIS OF QUASI-MINIMAL SETS
Akhmet, Marat (2009-07-01)
We address a nonautonomous differential equation with a pulse function, whose moments of discontinuity depend on the initial moment. Existence of a quasi-minimal set is proved. An appropriate simulation of a chaotic attractor is presented.
Devaney's chaos of a relay system
Akhmet, Marat (2009-04-01)
We address the differential equation with a pulse function, whose moments of discontinuity depend on the initial moment. The existence of a chaotic attractor, and the complex behavior of all solutions are investigated. An appropriate simulations are presented.
Effective-mass Dirac equation for Woods-Saxon potential: Scattering, bound states, and resonances
AYDOĞDU, OKTAY; Arda, Altug; Sever, Ramazan (2012-04-01)
Approximate scattering and bound state solutions of the one-dimensional effective-mass Dirac equation with the Woods-Saxon potential are obtained in terms of the hypergeometric-type functions. Transmission and reflection coefficients are calculated by using behavior of the wave functions at infinity. The same analysis is done for the constant mass case. It is also pointed out that our results are in agreement with those obtained in literature. Meanwhile, an analytic expression is obtained for the transmissi...
MUTUAL COUPLING EFFECTS OF FINITE RECTANGULAR PHASED-ARRAYS
YAVUZ, H; BUYUKDURA, OM (1994-04-14)
A rigorous integral equation formulation for the analysis of a phased array of flangemounted waveguide apertures is given for a finite number of elements and nonuniform spacings. The resulting set of ihtegrd equations is reduced to a matrix equation called the coupling matrix which relates the coefficients of all the modes in all the waveguides to one another. The solution then yields the dominant mode reflection coefficient, coefficients of scattered modes and hence the field in each waveguide. The blockTo...
Backward stochastic differential equations and Feynman-Kac formula in the presence of jump processes
İncegül Yücetürk, Cansu; Yolcu Okur, Yeliz; Hayfavi, Azize; Department of Financial Mathematics (2013)
Backward Stochastic Differential Equations (BSDEs) appear as a new class of stochastic differential equations, with a given value at the terminal time T. The application area of the BSDEs is conceptually wide which is known only for forty years. In financial mathematics, El Karoui, Peng and Quenez have a fundamental and significant article called “Backward Stochastic Differential Equations in Finance” (1997) which is taken as a groundwork for this thesis. In this thesis we follow the following steps: Firstl...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Akhmet, “Chaotic period-doubling and OGY control for the forced Duffing equation,”
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
, pp. 1929–1946, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46776.