Chaotic period-doubling and OGY control for the forced Duffing equation

2012-04-01
In this paper we consider the Duffing equation forced with a pulse function, whose moments of discontinuity depend on the initial data. Existence of the chaos through period-doubling cascade is proved, and the OGY control method is used to stabilize the periodic solutions. Appropriate simulations of the chaos and stabilized periodic solutions are presented.
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION

Suggestions

DYNAMICAL SYNTHESIS OF QUASI-MINIMAL SETS
Akhmet, Marat (2009-07-01)
We address a nonautonomous differential equation with a pulse function, whose moments of discontinuity depend on the initial moment. Existence of a quasi-minimal set is proved. An appropriate simulation of a chaotic attractor is presented.
Devaney's chaos of a relay system
Akhmet, Marat (2009-04-01)
We address the differential equation with a pulse function, whose moments of discontinuity depend on the initial moment. The existence of a chaotic attractor, and the complex behavior of all solutions are investigated. An appropriate simulations are presented.
Effective-mass Dirac equation for Woods-Saxon potential: Scattering, bound states, and resonances
AYDOĞDU, OKTAY; Arda, Altug; Sever, Ramazan (2012-04-01)
Approximate scattering and bound state solutions of the one-dimensional effective-mass Dirac equation with the Woods-Saxon potential are obtained in terms of the hypergeometric-type functions. Transmission and reflection coefficients are calculated by using behavior of the wave functions at infinity. The same analysis is done for the constant mass case. It is also pointed out that our results are in agreement with those obtained in literature. Meanwhile, an analytic expression is obtained for the transmissi...
MUTUAL COUPLING EFFECTS OF FINITE RECTANGULAR PHASED-ARRAYS
YAVUZ, H; BUYUKDURA, OM (1994-04-14)
A rigorous integral equation formulation for the analysis of a phased array of flangemounted waveguide apertures is given for a finite number of elements and nonuniform spacings. The resulting set of ihtegrd equations is reduced to a matrix equation called the coupling matrix which relates the coefficients of all the modes in all the waveguides to one another. The solution then yields the dominant mode reflection coefficient, coefficients of scattered modes and hence the field in each waveguide. The blockTo...
Backward stochastic differential equations and Feynman-Kac formula in the presence of jump processes
İncegül Yücetürk, Cansu; Yolcu Okur, Yeliz; Hayfavi, Azize; Department of Financial Mathematics (2013)
Backward Stochastic Differential Equations (BSDEs) appear as a new class of stochastic differential equations, with a given value at the terminal time T. The application area of the BSDEs is conceptually wide which is known only for forty years. In financial mathematics, El Karoui, Peng and Quenez have a fundamental and significant article called “Backward Stochastic Differential Equations in Finance” (1997) which is taken as a groundwork for this thesis. In this thesis we follow the following steps: Firstl...
Citation Formats
M. Akhmet, “Chaotic period-doubling and OGY control for the forced Duffing equation,” COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, pp. 1929–1946, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46776.