Water interactions with hydrophobic groups: Assessment and recalibration of semiempirical molecular orbital methods

2014-07-21
Marıon, Antoıne
Ruiz-Lopez, Manuel F.
Ingrosso, Francesca
In this work, we present a study of the ability of different semiempirical methods to describe intermolecular interactions in water solution. In particular, we focus on methods based on the Neglect of Diatomic Differential Overlap approximation. Significant improvements of these methods have been reported in the literature in the past years regarding the description of non-covalent interactions. In particular, a broad range of methodologies has been developed to deal with the properties of hydrogen-bonded systems, with varying degrees of success. In contrast, the interactions between water and a molecule containing hydrophobic groups have been little analyzed. Indeed, by considering the potential energy surfaces obtained using different semiempirical Hamiltonians for the intermolecular interactions of model systems, we found that none of the available methods provides an entirely satisfactory description of both hydrophobic and hydrophilic interactions in water. In addition, a vibrational analysis carried out in a model system for these interactions, a methane clathrate cluster, showed that some recent methods cannot be used to carry out studies of vibrational properties. Following a procedure established in our group [M. I. Bernal-Uruchurtu, M. T. C. Martins-Costa, C. Millot, and M. F. Ruiz-Lopez, J. Comput. Chem. 21, 572 (2000); W. Harb, M. I. Bernal-Uruchurtu, and M. F. Ruiz-Lopez, Theor. Chem. Acc. 112, 204 (2004)], we developed new parameters for the core-core interaction terms based on fitting potential energy curves obtained at the MP2 level for our model system. We investigated the transferability of the new parameters to describe a system, having both hydrophilic and hydrophobic groups, interacting with water. We found that only by introducing two different sets of parameters for hydrophilic and hydrophobic hydrogen atom types we are able to match the features of the ab initio calculated properties. Once this assumption is made, a good agreement with the MP2 reference is achieved. The results reported in this work provide therefore a direction for future developments of semiempirical approaches that are still required to investigate chemical processes in biomolecules and in large disordered systems. (C) 2014 AIP Publishing LLC.
JOURNAL OF CHEMICAL PHYSICS

Suggestions

Hydrogen bonding in polyanilines
Bahçeci, S.; Toppare, Levent Kamil; Yurtsever, E. (Elsevier BV, 1994-12)
Hydrogen bonding between poly(bisphenol A carbonate) (PC) and polyaniline (PAn) is analyzed using semi-empirical quantum methodology. Fully optimized AM1 molecular orbital calculations are reported for various aniline structures (monomer, dimer and trimer), the monomer of the PC and the hydrogen-bonded model of PAn-PC oligomer.
VAPOR-LIQUID-EQUILIBRIA OF SOME HYDROGEN PLUS HYDROCARBON SYSTEMS WITH THE WONG-SANDLER MIXING RULE
HUANG, H; SANDLER, SI; ORBEY, H (1994-05-10)
Owing to the highly supercritical nature of hydrogen in hydrogen-hydrocarbon systems, it is difficult to accurately predict, or even correlate, the phase behavior of such mixtures with cubic equations of state and conventional mixing rules, especially as the critical point of the mixture is approached. Here we show that an extended Peng-Robinson equation of state and the recently introduced Wong-Sandler mixing rule can correlate these systems successfully, and more importantly that the mixing rule parameter...
Density functional and dynamics study of the dissociative adsorption of hydrogen on Mg (0001) surface
Kecik, D.; Aydınol, Mehmet Kadri (Elsevier BV, 2009-01-15)
A first principles study is performed to investigate the adsorption characteristics of hydrogen on magnesium surface. Substitutional and on-surface adsorption energies are calculated for Mg (0001) surface alloyed with the selected elements. To further analyze the hydrogen-magnesium interaction, first principles molecular dynamics method is used which simulates the behavior of H-2 at the surface. Also, charge density differences of substitutionally doped surface configurations were illustrated. Accordingly, ...
Numerical solution of buoyancy MHD flow with magnetic potential
Pekmen, B.; Tezer, Münevver (2014-04-01)
In this study, dual reciprocity boundary element method (DRBEM) is applied for solving the unsteady flow of a viscous, incompressible, electrically conducting fluid in channels under the effect of an externally applied magnetic field and buoyancy force. Magnetohydrodynamics (MHD) equations are coupled with the energy equation due to the heat transfer by means of the Boussinessq approximation. Then, the 20 non-dimensional full MHD equations in terms of stream function, temperature, magnetic potential, curren...
Water Solubility Mechanical Barrier and Thermal Properties of Cross linked Whey Protein Isolate based Films
Zeynep, Üstünol; Mert, Behiç (2004-04-01)
Water solubility, thermal properties, tensile strength, percent elongation, oxygen permeability (OP), and water-vapor permeability (WVP) of cross-linked glycerol plasticized whey protein isolate films were studied to determine the effect of cross-linkers (glutaraldehyde, formaldehyde, dialdehyde starch, carbonyldiimidazole, and UV irradiation) on film properties. With the exception of UV treatment, solubility of the films decreased (P < 0.05) upon treatment of the film-forming solutions with chemical cross-...
Citation Formats
A. Marıon, M. F. Ruiz-Lopez, and F. Ingrosso, “Water interactions with hydrophobic groups: Assessment and recalibration of semiempirical molecular orbital methods,” JOURNAL OF CHEMICAL PHYSICS, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47007.