Simulation of crystallization and glass formation of binary Pd-Ag metal alloys

2004-08-15
Kart, HH
Uludogan, M
Cagin, T
Tomak, Mehmet
A molecular dynamics simulation is carried out to obtain an atomistic description of melting, glass formation, and crystallization processes for Pd-Ag alloys. This simulation uses the quantum Sutton-Chen (Q-SC) potential to study thermodynamics, mechanical, transport, and phase behavior during the heating and cooling processes for fcc transition metals and their binary metal alloys. Using different cooling rates we investigate glass formation tendency and crystallization of Pd-Ag metal alloys, by analyzing pair distribution function, enthalpy, volume, and diffusion coefficient. Pd-Ag alloys show the glass structure at fast cooling rates while it crystallizes at slow cooling rates. Glass and crystallization temperatures are also obtained from the Wendt-Abraham parameter. The split of the second peak in the pair distribution function is associated with the glass transition. The concentration effects on the glass transition are examined in term of thermodynamical properties. Glass forming ability increases with increasing of concentration of Ag in Pd-Ag alloys. The results show that Q-SC potential may correctly predict the melting, glass transition, and crystallization temperatures during the heating and cooling processes. (C) 2004 Published by Elsevier B.V.
JOURNAL OF NON-CRYSTALLINE SOLIDS

Suggestions

Theoretical prediction of bulk glass forming ability (BGFA) of Ti-Cu based multicomponent alloys
SUER, Sila; Mehrabov, Amdulla; Akdeniz, Mahmut Vedat (Elsevier BV, 2009-03-01)
The bulk glass forming ability (BGFA) of Ti-Cu based multicomponent alloys has been evaluated via theoretical modeling and computer simulation studies based on a combination of electronic theory of alloys in the pseudopotential approximation and the statistical thermodynamical theory of liquid alloys The. magnitude of atomic ordering energies, calculated by means of the electronic theory of alloys in the pseudopotential approximation, was subsequently used for calculation of the key thermodynamic parameters...
Kinetics of fcc-Al nanocrystallization in Al90Tb10 metallic glass
DEMIRTAS, T.; Kalay, Yunus Eren (Elsevier BV, 2013-10-15)
The crystallization kinetics of Al90Tb10 amorphous alloy were investigated by a combined study of differential scanning calorimetry (DSC), transmission electron microscopy (TEM), Cu-K alpha X-ray diffraction (XRD) analyses and microhardness measurements. Amorphous to fcc-Al transformation kinetics were descried through Johnson-Mehl-Avrami OMA) approach based on the isothermal DSC hold at 220 degrees C. XRD and TEM revealed the formation of highly populated (similar to 10(21) m(-3)) fcc-Al nanocrystals after...
Determination of the influence of TiO2 on the elastic properties of a mica based glass ceramic by ultrasonic velocity measurements
Gür, Cemil Hakan; Öztürk, Abdullah (Elsevier BV, 2005-11-15)
The influence of small amount (1 or 2 wt%) of TiO2 additions and crystallization heat treatment on the elastic properties of a mica based glass ceramic have been investigated by ultrasonic velocity measurements. The mica based glass ceramic was prepared through controlled crystallization of a glass in the SiO2, Al2O3, CaO, MgO, K2O and F system. Evidences of TiO2 acting as a nucleating agent in this system was demonstrated. The longitudinal and transversal wave velocities of the as-prepared glass and the mi...
METALLIC PHASE OF AMORPHOUS-SILICON
ERKOC, S; Katırcıoğlu, Şenay (Elsevier BV, 1989-01-01)
The local density-of-states calculation has been carried out for the amorphous silicon thin film generated by molecular-dynamics simulation by melting and quenching process. It is found that thin amorphous silicon film has a metallic phase on the free surface region.
Phase Identification of La-Doped Hard Magnetic Barium Ferrite Using Artificial Neural Network
Sozeri, Huseyin; KÜÇÜK, İLKER; Ozkan, Husnu (Springer Science and Business Media LLC, 2011-01-01)
A model based on an artificial neural network (ANN) was designed for the simulation and estimation of 2 theta and intensity values obtained by X-Ray Diffraction (XRD) of pure and La-doped barium ferrite powders which have been synthesized in ammonium nitrate melt. Its performance is evaluated by the influences of different La content, sintering temperature, Fe/Ba ratio, and washed in HCl (or not washed in HCl) samples. The XRD patterns of samples estimated by the ANN agree well with the experimental values,...
Citation Formats
H. Kart, M. Uludogan, T. Cagin, and M. Tomak, “Simulation of crystallization and glass formation of binary Pd-Ag metal alloys,” JOURNAL OF NON-CRYSTALLINE SOLIDS, pp. 6–11, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47074.