Programming van der Waals interactions with complex symmetries into microparticles using liquid crystallinity

2020-06-01
Fuster, H. A.
Wang, Xin
Wang, Xiaoguang
Büküşoğlu, Emre
Spagnolie, S. E.
Abbott, N. L.
Asymmetric interactions such as entropic (e.g., encoded by nonspherical shapes) or surface forces (e.g., encoded by patterned surface chemistry or DNA hybridization) provide access to functional states of colloidal matter, but versatile approaches for engineering asymmetric van der Waals interactions have the potential to expand further the palette of materials that can be assembled through such bottom-up processes. We show that polymerization of liquid crystal (LC) emulsions leads to compositionally homogeneous and spherical microparticles that encode van der Waals interactions with complex symmetries (e.g., quadrupolar and dipolar) that reflect the internal organization of the LC. Experiments performed using kinetically controlled probe colloid adsorption and complementary calculations support our conclusion that LC ordering can program van der Waals interactions by similar to 20 k(B)T across the surfaces of microparticles. Because diverse LC configurations can be engineered by confinement, these results provide fresh ideas for programming van der Waals interactions for assembly of soft matter.
SCIENCE ADVANCES

Suggestions

A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment
MIEHE, CHRISTIAN; Gürses, Ercan (2007-10-08)
The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius-Planck inequality in the sense of Coleman's method. Here, the canonical direction of the...
Structural and electronic properties of defected carbon nanocapsules
Pekoez, Rengin; Erkoç, Şakir (2007-06-01)
Structural and electronic properties of defected carbon nanocapsule systems have been investigated theoretically by performing semi-empirical molecular orbital and density functional theory methods. Geometries of the structures have been optimized by applying PM3 level of calculations within restricted Hartree Fock formalism and electronic information have been obtained by applying B3LYP level of density functional theory calculation using 3-21G basis set. The studied systems include (5,5) and (9,0) single-...
A Karhunen-Loeve-based approach to numerical simulation of transition in Rayleigh-Benard convection
Tarman, HI (2003-06-01)
A Karhunen-Loeve ( K - L) basis is generated empirically, using a database obtained by numerical integration of Boussinesq equations representing Rayleigh - Benard convection in a weakly turbulent state in a periodic convective box with free upper and lower surfaces. This basis is then used to reduce the governing partial differential equation (PDE) into a truncated system of amplitude equations under Galerkin projection. In the generation and implementation of the basis, the symmetries of the PDE and the g...
Understanding the effects of different polysaccharides on swelling of whey protein hydrogels
Öztop, Halil Mecit (null; 2015-08-10)
Hydrogels are highly hydrophilic polymer gels with macromolecular three dimensional networks. Primary use of hydrogels in food industry is encapsulation of bioactive compounds. They swell by absorbing and retaining large amount of water without dissolving and losing their integrity. In this study, our objective is to examine the effects of different polysaccharides on swelling of heat set gels which are composed of whey protein and different types of polysaccharides. Heats set gels were prepared by using wh...
Modeling of spherulite microstructures in semicrystalline polymers
Oktay, H. Emre; Gürses, Ercan (2015-11-01)
Semicrystalline polymers are composed of crystalline structures together with amorphous polymer chain networks and therefore they exhibit deformation mechanisms of both crystalline materials and amorphous polymers. One of the most common microstructures observed in semicrystalline polymers is the spherulite microstructure in which crystalline lamellae are embedded in a matrix of amorphous material and grow out from a common central nucleus in radial directions. The mechanical behavior of semicrystalline pol...
Citation Formats
H. A. Fuster, X. Wang, X. Wang, E. Büküşoğlu, S. E. Spagnolie, and N. L. Abbott, “Programming van der Waals interactions with complex symmetries into microparticles using liquid crystallinity,” SCIENCE ADVANCES, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47514.