Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Frontiers in Finite-Deformation Electromechanics
Date
2014-11-01
Author
Menzel, Andreas
Göktepe, Serdar
Kuhl, Ellen
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
135
views
0
downloads
Cite This
Subject Keywords
Model
,
Particles
,
Mechanics
URI
https://hdl.handle.net/11511/47527
Journal
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS
DOI
https://doi.org/10.1016/j.euromechsol.2014.05.008
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Components of detector response function: Monte Carlo simulations and experiment
Pekoz, Rengin; Can, Cüneyt (Wiley, 2006-11-01)
Components of the response function of an HPGe detector for 32 keV incident photons (Ba K alpha x-rays) were studied using a Monte Carlo program. Physical mechanisms and the role of incident photons, detector x-rays, photoelectrons and Compton recoil and Auger electrons for each component were investigated. The position, intensity and shape of the components, particularly of the photoelectrons, were studied in detail. Two distinct components for photoelectron escape were identified by considering the fate o...
Time resolved spectroscopy of laser induced air plasma
Kurt, Mustafa; Esendemir, Akif; Department of Physics (2007)
The laser beam interaction with matter and the plasma generation have been studied for many years. In some applications what is really important is to understand the composition and the temporal evolution of the species in the interested medium. In this thesis, time resolved optical spectroscopy was employed to understand the evolution of the plasma which is produced by interaction of Infrared (1.064 m) laser beam with air. In this thesis, a new technique is suggested to analyze the time evolution of laser ...
Optical characterization of silicon based hydrogenated amorphous thin films by un-visible and infrared measurements
Kılıç, İlker; Katırcıoğlu, Bayram; Department of Physics (2006)
Various carbon content hydrogenated amorphous silicon carbide (a-Si1ŁxCx:H) and hydrogenated amorphous silicon (a-Si:H) thin films have been deposited on various substrates by using plasma enhanced chemical vapour deposition (PECVD) technique. Transmission spectra of these films have been determined within UV-Visible region and the obtained data were analysed to find related physical constants such as; refractive indices, thicknesses, etc. Fourier transform infrared (FT-IR) spectrometry technique has been u...
Exciton simulations of the optical properties of several photosynthetic light-harvesting complexes
İşeri, Erkut İnan; Gülen, Demet; Department of Physics (2004)
The work presented in this thesis was aimed to investigate the structure-function relationship of several photosynthetic Light-Harvesting Complexes (LHCs) including Chlorophyll Protein 29 (CP29) and Light-Harvesting Complex II (LHCII) of green plants, and Fenna-Matthews-Olson (FMO) complex of green sulfur bacterium Chlorobium tepidum. Based on the exciton calculations, a model was proposed to the electronic excited states (EES) of both CP29 and LHCII complexes by incorporating a considerable part of the cur...
An investigation of x-ray escape for an HPGe detector
Can, Cüneyt; Bilgici, SZ (Wiley, 2003-07-01)
X-ray escape peaks for a planar HPGe detector were investigated for a point source of photons with 59.5 keV energy. The effect of the solid angle for the incident photons on the escape probability of Ge K x-rays was studied using collimators with varying apertures. A Monte Carlo program was also developed to estimate the probability of escape for various mechanisms and routes. The experimental and simulation results showed that the escape probability is essentially constant for a wide range of collimator ra...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Menzel, S. Göktepe, and E. Kuhl, “Frontiers in Finite-Deformation Electromechanics,”
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS
, pp. 1–2, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47527.