Electrochemical polymerization of 4-allylanisole

2001-09-01
Cihaner, A
Testereci, HN
Önal, Ahmet Muhtar
Electrochemical polymerization of 3-allylanisole (4AA). via constant potential electrolysis, has been investigated in acetonitrile using two different supporting electrolytes. Redox behavior of the monomer was also studied in the same solvent-electrolyte couples at room temperature. Electrochemical polymerization of the monomer yielded insoluble polymer films on the electrode surface, which bears a very low conductivity, together with the low molecular weight polymers in the bulk of the solution. The decrease in the monomer concentration, during the electrochemical polymerization. was monitored by taking the cyclic voltammogram of the electrolysis solution. The effect of temperature on the rate of electrochemical polymerization was: also studied. The polymers were characterized by taking the H-1-NMR and FTIR spectra. Molecular weight of the soluble polymer was determined by vapor pressure osmometry. Thermal analysis of the polymer film and soluble polymer were done by DSC.
EUROPEAN POLYMER JOURNAL

Suggestions

Electrochemical copolymerization of 2-substituted thiophene derivative linked by polyether bridge with thiophene
Cihaner, A; Önal, Ahmet Muhtar (2005-09-01)
New conducting copolymers have been synthesized via electrochemical oxidation of thiophene (Th) in the presence of monomer bis(2-thienyl)ethyl (1). Cyclic voltammetry (CV) studies showed that the presence of monomer I in the electrolytic solution greatly changes the CV behaviour of the formation of the polythiophene films. It is found that the increasing ratio of I was found to decrease electroactivity of copoly(I-Th). Electrochemical synthesis of copolymer films was achieved via constant potential electrol...
Electrochemical copolymerization of thiophene containing pseudo-polyether cages with pyrrole
Cihaner, Atilla; Önal, Ahmet Muhtar (2006-01-01)
Conducting copolymers were synthesized via the electrochemical oxidation of pyrrole (Py) in the presence of the monomer 1,12-bis(2-thienyl)-2,5,8,11-tetraoxadodecane (1). The presence of monomer I in the electrolytic solution greatly changed the CV behavior of Py during its potensiodynamic polymerization. The electroactivity of poly(I-co-Py) increased with the increasing amount of I in the comonomer mixture. Copolymer films were prepared via constant potential electrolysis in an electrolytic solution contai...
Electrochemical and optical properties of 5,6-bis(octyloxy)-2,1,3 benzooxadiazole containing low band gap polymers
Goker, Seza; Hizalan, Gonul; Udum, Yasemin Arslan; Toppare, Levent Kamil (Elsevier BV, 2014-05-01)
Benzooxadiazole containing three monomers; 5,6-bis(octyloxy)-4,7-bis(4-hexylthiophen-2-yl)-2,1,3-benzoxadiazole (BOHT), 5,6-bis(octyloxy)-4,7-di-2-thienyl-2,1,3-benzoxadiazole (BODT) and 5,6-bis(octyloxy)-4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,1,3-benzoxadiazole (BODHT) were synthesized via Stille coupling reaction. Their electrochemical polymerizations were carried out on ITO coated glass slides in a three electrode system. Electrochemical, spectral and kinetic results were given in detail and...
Electrochemical polymerization of para-substituted haloanilines
Cihaner, A; Önal, Ahmet Muhtar (Informa UK Limited, 2006-01-01)
Polyhaloanilines: poly(4-fluoroaniline) (P4FAN), poly(4-chloroaniline) (P4CAN), and poly(4-bromoaniline) (P4BAN), are synthesized from para-substituted haloaniline monomers; 4-fluoroaniline (4FAN), 4-chloroaniline (4CAN), and 4-bromoaniline (4BAN), respectively, via constant potential electrolysis (CPE) in acetonitrile-water mixture (1:1 v/v) with NaClO4 as supporting electrolyte. Prior to CPE, electrochemical behavior of the monomers were investigated in organic medium utilizing cyclic voltammetry (CV). Th...
Electrochemical and chemical oxidation of K(C2H5OCS2),[Ni(C2H5OCS2)(2)] and [N(C2H5)(4)][Ni(C2H5OCS2)(3)]
Dag, O; Önal, Ahmet Muhtar; Isci, H (1996-06-26)
Electrochemical and chemical oxidation of (Et-Xan(-)), [Ni(Et-Xan)(2)] and [Ni(Et-Xan)(3)](-) (Et-Xan(-) = C2H5OCS2- have been studied by Cyclic Voltammetry and in situ UV-Vis spectroscopy in acetonitrile at room temperature. Cyclic Voltammograms (CV) of Et-Xan(-) and Ni(Et-Xan)(2) display one (0.00 V) and two (0.35 and 0.80 V) irreversible oxidation peaks, respectively, referenced to Ag/Ag+(0.10 M) electrode. However, CV of Ni(Et-Xan)(3)(-) displays one reversible (-0.15 V) and two irreversible (0.35, 0.80...
Citation Formats
A. Cihaner, H. Testereci, and A. M. Önal, “Electrochemical polymerization of 4-allylanisole,” EUROPEAN POLYMER JOURNAL, pp. 1747–1752, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47578.