Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Ti6Al4V foams having nanotubular surfaces for orthopaedic applications
Date
2019-07-26
Author
Izmir, Merve
Tufan, Yiğithan
Tan, Guher
Ercan, Batur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Despite the widespread use of Ti6Al4V in orthopaedics, the bioinert nature of this alloy limits its biological fixation with the bone tissue. To enhance its bone fixation, two different types of Ti6Al4V foams were fabricated, and their surfaces were modified zto possess nanofeatures. To prepare the foams, spherical- or irregular-shaped Ti6Al4V particles were used to form the backbones of the foams, while magnesium or carbamide powders were used as space holder agents. Once Ti6Al4V foams were fabricated, oxide-based nanotubular arrays having 40 nm diameter were formed on the interconnected pore surfaces via anodization. Results showed successful growth of nanotubular oxide arrays independent of the pore surface morphology, chemistry, and porosity content. Nanotubular surfaces induced formation of calcium phosphate minerals independent of the Ti6Al4V particle type and the space holder agent. Thus, anodized nanotubular Ti6Al4V foams could potentially induce enhanced integration of Ti6Al4V-based porous implants with the bone tissue.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Surfaces, Coatings and Films
,
Surfaces and Interfaces
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/47809
Journal
SURFACE AND INTERFACE ANALYSIS
DOI
https://doi.org/10.1002/sia.6687
Collections
Department of Metallurgical and Materials Engineering, Article