Inter-model analysis of tsunami-induced coastal currents

2017-06-01
Lynett, Patrick J.
Gately, Kara
Wilson, Rick
Montoya, Luis
Arcas, Diego
Aytore, Betul
Bai, Yefei
Bricker, Jeremy D.
Castro, Manuel J.
Cheung, Kwok Fai
David, C. Gabriel
Dogan, Gozde Guney
Escalante, Cipriano
Gonzalez-Vidak, Jose Manuel
Grilli, Stephan T.
Heitmann, Troy W.
Horrillo, Juan
Kanoğlu, Utku
Kian, Rozita
Kirby, James T.
Li, Wenwen
Macias, Jorge
Nicolsky, Dmitry J.
Ortega, Sergio
Pampell-Manis, Alyssa
Park, Yong Sung
Roeber, Volker
Sharghivand, Naeimeh
Shelby, Michael
Shi, Fengyan
Tehranirad, Babak
Tolkova, Elena
Thio, Hong Kie
Velioglu, Deniz
Yalçıner, Ahmet Cevdet
Yamazaki, Yoshiki
Zaytsev, Andrey
Zhang, Y. J.
To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts.
OCEAN MODELLING

Suggestions

Seismic hazard assessment for Cyprus
Cagnan, Zehra; TANIRCAN, GÜLÜM (Springer Science and Business Media LLC, 2010-04-01)
In the present study, probabilistic seismic hazard assessment was conducted for Cyprus based on several new results: a new comprehensive earthquake catalog, seismic source models based on new research, and new attenuation relationships. Peak ground acceleration distributions obtained for a return period of 475 years for rock conditions indicate high hazard along the southern coastline of Cyprus, where the expected ground motion is between 0.3 and 0.4 g. The rest of the island is characterized by values repr...
Accuracy assessment of MODIS daily snow albedo retrievals with in situ measurements in Karasu basin, Turkey
Tekeli, AE; Sensoy, A; Sorman, A; Akyürek, Sevda Zuhal; Sorman, U (Wiley, 2006-03-15)
Over the ablation period of 2004, daily snow albedo values retrieved from the moderate-resolution imaging spectroradiometer (MODIS) Terra were compared with ground-based albedo measurements. Two data sets are used for this study. The first data set is from two automatic weather stations (AWS) located at fixed points in Karasu basin in eastern Turkey. This provided the temporal assessment of MODIS daily snow albedo values. The second data set, consisting of 19 observation points randomly distributed around o...
Combined simulation-optimization of a coastal aquifer by using Genetic Algorithm
Demirbaş, Kerim; Altan Sakarya, Ayşe Burcu; Onder, H. (2010-06-25)
Excessive pumping in coastal aquifers results in seawater intrusion where optimal and efficient planning is essential. In this study, numerical solution of single potential solution by Strack (1976) is combined with Genetic Algorithm (GA) to optimize the maximum benefit in a coastal aquifer. Injection wells are added as an artificial recharge to prevent seawater intrusion. The objective is to optimize both pumping rates and locations of injection wells. The model is applied to a previous work by Mantoglou (...
Tsunami risk and strategies for the European region (TRANSFER)
Yalçıner, Ahmet Cevdet(2009-10-30)
The project main goal is to contribute to our understanding of tsunami processes in the Euro-Mediterranean region, to the tsunami hazard and risk assessment and to identifying the best strategies for reduction of tsunami risk. Focus will be posed on the gaps and needs for the implementation of an efficient tsunami early warning system (TEWS) in the Euro-Mediterranean area, which is a high-priority task in consideration that no tsunami early warning system is today in place in the Euro-Mediterranean countrie...
Flow dynamics at the origin of thin clayey sand lacustrine turbidites: Examples from Lake Hazar, Turkey
Hage, Sophie; Hubert-Ferrari, Aurelia; Lamaır, Laura; Avşar, Ulaş; El Ouahabı, Meriam; Van Daele, Maarten; Boulvaın, Frederic; Bahrı, Mohamed Ali; Seret, Alain; Plenevaux, Alain (2017-12-01)
Turbidity currents and their deposits can be investigated using several methods, i.e. direct monitoring, physical and numerical modelling, sediment cores and outcrops. The present study focused on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in eleven clusters of closely spaced thin beds. Depositional processes and sources for three of those eleven clusters are studied at three coring sites. Bathymetrical data and seismic reflection profiles are used to understand the specific geomorph...
Citation Formats
P. J. Lynett et al., “Inter-model analysis of tsunami-induced coastal currents,” OCEAN MODELLING, pp. 14–32, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48265.