A MEMS turbine prototype for respiration harvesting

2015-12-04
Goreke, U.
Habibiabad, S.
Azgın, Kıvanç
Beyaz, M. I.

Suggestions

A fully integrated autonomous power management system with high power capacity and novel MPPT for thermoelectric energy harvesters in IoT/wearable applications
Tabrizi, Hamed Osouli; Jayaweera, H. M. P. C.; Muhtaroglu, Ali;( Abstracts: This paper reports a fully integrated autonomous power management system for thermoelectric energy harvesting with application in batteryless IoT/Wearable devices. The novel maximum power point tracking (MPPT) algorithm does not require open circuit voltage measurement. The proposed system delivers 0.5 mA current with 1 V regulated output based on simulations, which is the highest output current for a fully integrated converter reported in the literature for ultra-low voltage applications, to the best knowledge of the authors. Regulated 1 V output can be achieved for load range >2 k Omega, and input voltage range >140 mV. The circuit has been implemented in UMC-180nm standard CMOS technology and simulated.; 2017-11-17)
This paper reports a fully integrated autonomous power management system for thermoelectric energy harvesting with application in batteryless IoT/Wearable devices. The novel maximum power point tracking (MPPT) algorithm does not require open circuit voltage measurement. The proposed system delivers 0.5 mA current with 1 V regulated output based on simulations, which is the highest output current for a fully integrated converter reported in the literature for ultra-low voltage applications, to the best knowl...
An Autonomous Interface Circuit Based on Self-Investing Synchronous Energy Extraction for Low Power Piezoelectric Energy Harvesters
ÇİFTCİ, BERKAY; Chamanian, S.; Uluşan, H.; Külah, Haluk (2019-12-04)
This paper presents a self-powered interface circuit to rectify and manage the AC output of the piezoelectric energy harvesters (PEH) by utilizing Self-Investing Synchronous Electric Charge Extraction technique (SI-SECE). The system invests charges from the battery to PEH to improve the electromechanical coupling factor and consequently the energy extraction by utilizing only one external component. The circuit was implemented in 180 nm CMOS technology where high voltage (HV) MOS transistors are utilized to...
A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters
Ulusan, H.; Gharehbaghi, K.; Zorlu, O.; Muhtaroglu, A.; Külah, Haluk (2015-12-04)
This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-power...
Advanced plasmonic interfaces for optimized light trapping in photovoltaics
SALEH, Z. M.; NASSER, HİSHAM; ÖZKOL, ENGİN; Bek, Alpan; Turan, Raşit (2017-02-25)
Plasmonic interfaces are integrated to photovoltaic devices to enhance light trapping and improve efficiency. The optimum thickness of the spacer layer used to passivate the absorber layer and adjust its distance from the metal nanoparticles remains unclear. We integrate plasmonic interfaces consisting of Ag nanoparticles and silicon nitride spacers of different thicknesses to the back of a-Si:H absorber to investigate the optimum thickness of the spacer layer and use the photocurrent in a-Si:H to indicate ...
A search for new physics in dijet mass and angular distributions in pp collisions at root s=7 TeV measured with the ATLAS detector
Aad, G.; et. al. (IOP Publishing, 2011-05-24)
A search for new interactions and resonances produced in LHC proton-proton (pp) collisions at a centre-of-mass energy root s = 7 TeV was performed with the ATLAS detector. Using a dataset with an integrated luminosity of 36 pb(-1), dijet mass and angular distributions were measured up to dijet masses of similar to 3.5 TeV and were found to be in good agreement with Standard Model predictions. This analysis sets limits at 95% CL on various models for new physics: an excited quark is excluded for mass between...
Citation Formats
U. Goreke, S. Habibiabad, K. Azgın, and M. I. Beyaz, “A MEMS turbine prototype for respiration harvesting,” 2015, vol. 660, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48843.